could you help me in this code
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
% Define grid parameters
h = 1/4; % Grid spacing
x = -1:h:1; % Grid points in x direction
y = -1:h:1; % Grid points in y direction
n = length(x); % Number of grid points
% Initialize solution matrix
U = zeros(n,n);
% Set boundary conditions
U(1,:) = 0; % u(x,y)=0 along y=1
U(n,:) = 0; % u(x,y)=0 along y=-1
U(:,1) = 0.5*U(:,2); % u(x,y)=(1/2)u, x=-1,-1<y<1
U(:,n) = -0.5*U(:,n-1); % u(x,y)=-(1/2)u, x=1,-1<y<1
% Construct matrix A
B = [-6 2 0 0 0; 1 -6 1 0 0; 0 1 -6 1 0; 0 0 1 -6 1; 0 0 0 2 -6.25];
I = eye(5);
A = kron(eye(n-2), B) + kron(diag(ones(n-3,1), -1), I) + kron(diag(ones(n-3,1), 1), I);
% Construct right-hand side vector rhs from boundary conditions
rhs = zeros(n^2, 1);
rhs(1:n) = U(1,:)' / h^2;
rhs(end-n+1:end) = -U(n,:)' / h^2;
rhs(1:n:n*(n-2)+1) = rhs(1:n:n*(n-2)+1) + U(:,1) / h^2;
rhs(n:n:n^2-n+1) = rhs(n:n:n^2-n+1) - U(:,n) / h^2;
Arrays have incompatible sizes for this operation.
% Solve the system of equations using matrix inversion
U_vec = A \ rhs;
U = reshape(U_vec, [n, n]);
% Plot the solution as a 3-D mesh
figure;
mesh(x, y, U');
xlabel('x');
ylabel('y');
zlabel('u(x,y)');
title('Solution of the Poisson equation using central differences');
Error using \
0 commentaires
Réponses (1)
Walter Roberson
le 4 Mai 2023
You cannot add an 8 x 1 vector and a 9 x 1 vector.
% Define grid parameters
h = 1/4; % Grid spacing
x = -1:h:1; % Grid points in x direction
y = -1:h:1; % Grid points in y direction
n = length(x); % Number of grid points
% Initialize solution matrix
U = zeros(n,n);
% Set boundary conditions
U(1,:) = 0; % u(x,y)=0 along y=1
U(n,:) = 0; % u(x,y)=0 along y=-1
U(:,1) = 0.5*U(:,2); % u(x,y)=(1/2)u, x=-1,-1<y<1
U(:,n) = -0.5*U(:,n-1); % u(x,y)=-(1/2)u, x=1,-1<y<1
% Construct matrix A
B = [-6 2 0 0 0; 1 -6 1 0 0; 0 1 -6 1 0; 0 0 1 -6 1; 0 0 0 2 -6.25];
I = eye(5);
A = kron(eye(n-2), B) + kron(diag(ones(n-3,1), -1), I) + kron(diag(ones(n-3,1), 1), I);
% Construct right-hand side vector rhs from boundary conditions
rhs = zeros(n^2, 1);
rhs(1:n) = U(1,:)' / h^2;
rhs(end-n+1:end) = -U(n,:)' / h^2;
part1 = rhs(1:n:n*(n-2)+1);
part2 = U(:,1) / h^2;
size(part1)
size(part2)
rhs(1:n:n*(n-2)+1) = part1 + part2
rhs(n:n:n^2-n+1) = rhs(n:n:n^2-n+1) - U(:,n) / h^2;
2 commentaires
Walter Roberson
le 4 Mai 2023
I do not know.
I would suggest to you that it might be easier to costruct rhs as an n x n 2D array and then reshape it to vector afterwards.
Voir également
Catégories
En savoir plus sur Resizing and Reshaping Matrices dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!