How to find the maximum value of two variables of a function in MATLAB
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi everyone,
I would like to find the maximum value of \eta and xo in the function below using numerical simulation:
z=1e6*log2(1+(10^(30/10)*4*(3e8/(4*pi*1e12))^2*15^(-4)*exp(-0.0016*15))/10^(-90/10))*(-1/(1e4^(1-0.5)-1))+ 1e6*log2(1+(10^(30/10)*4*(3e8/(4*pi*1e12))^2*x0^(-2)*exp(-0.0016*x0))/10^(-90/10))*((100/eta)^(1-0.5)-1)/(1e4^(1-0.5)-1);
\eta range and xo range are:
eta_range = 0.01:0.01:1;
x0_range = 1:1:100;
2 commentaires
Rik
le 20 Juin 2023
I recovered the removed content from the Google cache (something which anyone can do). Editing away your question is very rude. Someone spent time reading your question, understanding your issue, figuring out the solution, and writing an answer. Now you repay that kindness by ensuring that the next person with a similar question can't benefit from this answer.
Matt J
le 20 Juin 2023
Back-up copy of Hadeel Obaid's question:
Hi everyone,
I would like to find the maximum value of \eta and xo in the function below using numerical simulation:
z=1e6*log2(1+(10^(30/10)*4*(3e8/(4*pi*1e12))^2*15^(-4)*exp(-0.0016*15))/10^(-90/10))*(-1/(1e4^(1-0.5)-1))+ 1e6*log2(1+(10^(30/10)*4*(3e8/(4*pi*1e12))^2*x0^(-2)*exp(-0.0016*x0))/10^(-90/10))*((100/eta)^(1-0.5)-1)/(1e4^(1-0.5)-1);
\eta range and xo range are:
eta_range = 0.01:0.01:1;
x0_range = 1:1:100;
Réponses (2)
Matt J
le 10 Mai 2023
Modifié(e) : Matt J
le 10 Mai 2023
Your function z is separable and monotonically decreasing in both variables. So, it should come as no surprise that the smallest values of eta and x0 give the maximum. However, you can verify that with the code below:
eta = (0.01:0.01:1)';
x0 = (1:100);
z=1e6.*log2(1+(10.^(30./10).*4.*(3e8./(4.*pi.*1e12)).^2.*15.^(-4).*exp(-0.0016.*15))./10.^(-90./10)).*(-1./(1e4.^(1-0.5)-1))+ 1e6.*log2(1+(10.^(30./10).*4.*(3e8./(4.*pi.*1e12)).^2.*x0.^(-2).*exp(-0.0016.*x0))./10.^(-90./10)).*((100./eta).^(1-0.5)-1)./(1e4.^(1-0.5)-1);
[maxval,k]=max(z,[],'all','linear')
[i,j]=ind2sub(size(z),k);
eta_max=eta(i),
x0_max=x0(j),
3 commentaires
Matt J
le 11 Mai 2023
@Hadeel Obaid Torsten and I reached the same result. And, as I outlined above, you did not need any code to reach this result. The maximizing point is obvious from the expression for z.
Torsten
le 10 Mai 2023
eta = 0.01:0.01:1;
x0 = (1:1:100).';
z = 1e6*log2(1+(10^(30/10)*4*(3e8/(4*pi*1e12))^2*15^(-4)*exp(-0.0016*15))/10^(-90/10))*(-1/(1e4^(1-0.5)-1))+ 1e6*log2(1+(10^(30/10)*4*(3e8/(4*pi*1e12))^2*x0.^(-2).*exp(-0.0016*x0))/10^(-90/10))*((100./eta).^(1-0.5)-1)/(1e4^(1-0.5)-1);
maximum_z = max(max(z))
[i,j] = find(z==maximum_z)
0 commentaires
Voir également
Catégories
En savoir plus sur Historical Contests dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!