Removing vertical lines in a piecewise function when discontinuty points are not known

3 vues (au cours des 30 derniers jours)
I am creating various cantor staircases by starting from different functions:
for example:
N = 3;
f{1} = @(x)sin(2*pi*x);
for i = 1:N-1
f{i+1} = @(x)(0.5*f{i}(3*x).*(x<=1/3) + 0.5.*(x>1/3 & x<2/3) + (0.5+0.5*f{i}(3*x-2)).*(x>=2/3 & x <=1));
end
x = linspace(0,1,1000);
plot(x,f{N}(x))
The problem is that vertical lines are emerging.
How do I remove the vertical lines when I do not know(do not want to find) the discontinuity points? Surely there has to be a way...

Réponse acceptée

Torsten
Torsten le 13 Mai 2023
Modifié(e) : Torsten le 13 Mai 2023
Maybe something like this. But the jump height of 0.05 at discontinuities most probably has to be adjusted in other applications.
N = 3;
f{1} = @(x)sin(2*pi*x);
for i = 1:N-1
f{i+1} = @(x)(0.5*f{i}(3*x).*(x<=1/3) + 0.5.*(x>1/3 & x<2/3) + (0.5+0.5*f{i}(3*x-2)).*(x>=2/3 & x <=1));
end
x = linspace(0,1,1000);
y = f{N}(x);
idx = find(abs(diff(y)) > 0.05);
idx(end+1) = numel(x);
hold on
iend = 0;
for i = 1:numel(idx)
istart = iend + 1;
iend = idx(i);
plot(x(istart:iend),y(istart:iend),'b');
end
hold off
grid on
  2 commentaires
Vivaan
Vivaan le 13 Mai 2023
Is it possible to store this function in a variable somehow?
Torsten
Torsten le 13 Mai 2023
Modifié(e) : Torsten le 13 Mai 2023
You can save the separate "sections" of the x- and y-array in a cell array. This cell array will have elements equal to the number of sections. In the loop, you can add the two lines
X_array{i} = x(istart:iend);
Y_array{i} = y(istart:iend);
before or after the plot command.

Connectez-vous pour commenter.

Plus de réponses (1)

chicken vector
chicken vector le 13 Mai 2023
Modifié(e) : chicken vector le 13 Mai 2023
EDIT: Thanks to @Torsten
figure;
tiledlayout(2,2);
for N = 2 : 5
nexttile;
f{1} = @(x)sin(2*pi*x);
for i = 1 : N-1
f{i+1} = @(x)(0.5*f{i}(3*x).*(x<=1/3) + 0.5.*(x>1/3 & x<2/3) + (0.5+0.5*f{i}(3*x-2)).*(x>=2/3 & x <=1));
end
x = linspace(0,1,1000);
y = f{N}(x);
horizontalIdx = [diff(y)~=0, 1];
breakIdx = [1 strfind([0 horizontalIdx 0], [1 0])];
hold on;
for line = 1 : length(breakIdx)-1
idx = breakIdx(line):breakIdx(line+1)-1;
plot(x(idx), y(idx),'Color',[0 0.4470 0.7410]);
end
hold off;
box on;
end
OLD ANSWER:
I am assuming you meant horizontal lines as I don't see any vertical ones.
N = 3;
f{1} = @(x)sin(2*pi*x);
for i = 1:N-1
f{i+1} = @(x)(0.5*f{i}(3*x).*(x<=1/3) + 0.5.*(x>1/3 & x<2/3) + (0.5+0.5*f{i}(3*x-2)).*(x>=2/3 & x <=1));
end
x = linspace(0,1,1000);
y = f{N}(x);
You can use:
horizontalIdx = find([diff(y)==0, 0]);
y(horizontalIdx) = NaN;
figure;
plot(x,y);
Or:
horizontalIdx = [diff(y)~=0, 0];
startIdx = strfind([0 horizontalIdx], [0 1]) + 1;
endIdx = strfind([horizontalIdx 0], [1 0]);
figure;
hold on;
for line = 1 : length(startIdx)
idx = startIdx(line):endIdx(line);
plot(x(idx), y(idx),'Color',[0 0.4470 0.7410]);
end
hold off;
box on;
  2 commentaires
Torsten
Torsten le 13 Mai 2023
Modifié(e) : Torsten le 13 Mai 2023
I am assuming you meant horizontal lines as I don't see any vertical ones.
No, @Vivaan meant the graph at discontinuities, thus where wrong vertical lines appear.
chicken vector
chicken vector le 13 Mai 2023
Modifié(e) : chicken vector le 13 Mai 2023
You are right, I was completely blind to those.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Logical dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by