set first derivative equal to zero with some constant

15 vues (au cours des 30 derniers jours)
nirwana
nirwana le 14 Mai 2023
Modifié(e) : Torsten le 14 Mai 2023
I have equation from derive from snellius law and i'd like to set its derivative equal to zero since fermat principle said so.
here the matlab that I used to get fist derivative, but when I solve it in order to get x value when dT/dt=0 it give me strange result. Is it because I put a lot of variable in syms? actually a, b, c, v1 and v2 is a constant. should I put it a number rather than a alphabet symbol to get proper result?
syms x a b c v1 v2
T=sqrt(x.^2+a^2)./v1+sqrt((b-x).^2+c^2)./v2;
dTdx=diff(T)
dTdx = 
fermat=solve(dTdx==0,x)
fermat = 
  2 commentaires
Matt J
Matt J le 14 Mai 2023
Modifié(e) : Matt J le 14 Mai 2023
but when I solve it in order to get x value when dT/dt=0 it give me strange result.
What's the result, and what is strange about it?
Dyuman Joshi
Dyuman Joshi le 14 Mai 2023
What are you solving with dTdx == 0 is a polynomial in x, and thus you are getting the roots of the polynomial as the output, in terms of the variables.
"actually a, b, c, v1 and v2 is a constant. should I put it a number rather than a alphabet symbol to get proper result?"
Yes. If you want Numerical solution, you will have to define the variables with numerical values.
Use double() if you want to convert the symbolic result into numerical result

Connectez-vous pour commenter.

Réponses (1)

Matt J
Matt J le 14 Mai 2023
Modifié(e) : Matt J le 14 Mai 2023
should I put it a number rather than a alphabet symbol to get proper result?
You should just use fzero The symbolic solutions for x are very messy.
[a, b, c, v1, v2]=deal(1);
fun=@(x) x./sqrt(x.^2+a.^2)./v1 -(b-x)./sqrt((b-x).^2+c.^2)./v2;
x = fzero(fun,1)
x = 0.5000
fplot(fun,[-5 ,5]); yline(0); xline(x)

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by