Iteration over initial condition in ode45
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi, I am trying to solve the following differential equation using ode45, which works fine but I need to iterate the initial condition of ti for different values of e (0.4,0.5,0.6,0.7,0.8,0.9) and Pg (3,4,5) untile the solution reach the value of 0.05. For instance for the case of e = 0.73 and Pg = 3, only with ti = 984, the solution will reach 0.05. My question is how can I solve this eqaution iteratively until for each values of e and Pg it finds the ti that gives the CDF = 0.05.
I know I asked this question before here but still couldn't figure out the solution for it. I would appreciate if anyone can help me. Thanks!
clc; clear;
ti = 984;
CDF_in = 0;
tEnd = 7200;
[tsol, CDFsol] = ode45(@(t,CDF) firstODEfun(t,CDF), [ti tEnd], CDF_in);
plot(tsol, CDFsol)
function dCDF = firstODEfun(t,~)
t0 = 2.512E-018;
r0 = 8.275E-02;
Nrod = 91;
l = 1.59E-02;
drod = 0.0135;
Drod = 0.01174;
sigma = 5.67E-08;
d = 8.8E-04;
Te = 633;
b = 2.303E+03;
taw = 1 - (drod/l);
e = 0.73;
Pg = 3;
S = (Drod/(2*d))*Pg;
P = -1.2*log10(S)+23.31;
y = e/(2-e);
u = 1 + (((1-taw))*((1/y)+(1/taw)-1));
c = 0.5*(1 + u - (sqrt((u -1)*(u+3))));
f = (1+c)*((e/(2-e))+(taw*(1-taw)/(1-taw*c)))*(l/drod);
F = 4*f*sigma*drod;
K = (Nrod/pi)*((1/F)+(0.5*(((3-e)/e)*(1/(r0*sigma)))));
Q= 307.59 - 190.96*(log(t/24)).^0.24;
Tc = ((Te^4)+K.*Q).^0.25;
disp(Tc)
tr = t0*exp((b*P)/Tc);
dCDF = 1/tr;
end
0 commentaires
Réponses (1)
Torsten
le 17 Mai 2023
Modifié(e) : Torsten
le 17 Mai 2023
e = [0.4,0.5,0.6,0.7,0.8,0.9];
Pg = [3,4,5];
tistart = 500;
tEnd = 7200;
CDF_in = 0;
for i = 1:numel(e)
for j = 1:numel(Pg)
[sol(i,j),fval(i,j)] = fsolve(@(x)fun(x,tEnd,CDF_in,e(i),Pg(j)),tistart,optimset('TolX',1e-16,'TolFun',1e-16,'Display','none'));
[tsol{i,j},CDFsol{i,j}] = ode45(@(t,CDF)firstODEfun(t,CDF,e(i),Pg(j)),[sol(i,j) tEnd], CDF_in );
end
end
hold on
plot(tsol{1,1},CDFsol{1,1}(:,1))
plot(tsol{3,2},CDFsol{3,2}(:,1))
plot(tsol{end,end},CDFsol{end,end}(:,1))
hold off
grid on
function res = fun(ti,tEnd,CDF_in,e,Pg)
[tsol, CDFsol] = ode45(@(t,CDF) firstODEfun(t,CDF,e,Pg), [ti tEnd], CDF_in);
res = CDFsol(end,1) - 0.05;
end
function dCDF = firstODEfun(t,~,e,Pg)
t0 = 2.512E-018;
r0 = 8.275E-02;
Nrod = 91;
l = 1.59E-02;
drod = 0.0135;
Drod = 0.01174;
sigma = 5.67E-08;
d = 8.8E-04;
Te = 633;
b = 2.303E+03;
taw = 1 - (drod/l);
%e = 0.73;
%Pg = 3;
S = (Drod/(2*d))*Pg;
P = -1.2*log10(S)+23.31;
y = e/(2-e);
u = 1 + (((1-taw))*((1/y)+(1/taw)-1));
c = 0.5*(1 + u - (sqrt((u -1)*(u+3))));
f = (1+c)*((e/(2-e))+(taw*(1-taw)/(1-taw*c)))*(l/drod);
F = 4*f*sigma*drod;
K = (Nrod/pi)*((1/F)+(0.5*(((3-e)/e)*(1/(r0*sigma)))));
Q= 307.59 - 190.96*(log(t/24)).^0.24;
Tc = ((Te^4)+K.*Q).^0.25;
tr = t0*exp((b*P)/Tc);
dCDF = 1/tr;
end
3 commentaires
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
