Problem while implementing "Gradient Descent Algorithm" in Matlab

10 vues (au cours des 30 derniers jours)
Atinesh S
Atinesh S le 11 Avr 2015
Commenté : Ashok Saini le 4 Juil 2022
I'm solving a programming assignment in machine learning course. In which I've to implement "Gradient Descent Algorithm" like below
I'm using the following code
data = load('ex1data1.txt');
% text file conatins 2 values in each row separated by commas
X = [ones(m, 1), data(:,1)];
theta = zeros(2, 1);
iterations = 1500;
alpha = 0.01;
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
k=1:m;
j1=(1/m)*sum((theta(1)+theta(2).*X(k,2))-y(k))
j2=((1/m)*sum((theta(1)+theta(2).*X(k,2))-y(k)))*(X(k,2))
theta(1)=theta(1)-alpha*(j1);
theta(2)=theta(2)-alpha*(j2);
J_history(iter) = computeCost(X, y, theta);
end
end
theta = gradientDescent(X, y, theta, alpha, iterations);
On running the above code I'm getting this error message
  3 commentaires
Nancy Irisarri
Nancy Irisarri le 13 Mai 2019
Calculation of k can be outside the for loop. Improves performance!
Ashok Saini
Ashok Saini le 4 Juil 2022
hey have u found answer of your question

Connectez-vous pour commenter.

Réponse acceptée

Matt J
Matt J le 11 Avr 2015
j2 is not a scalar, but you are trying to assign it to a scalar location theta(2).
Did you intend for this line
k=1:m;
to be a for-loop
for k=1:m
  2 commentaires
Atinesh S
Atinesh S le 11 Avr 2015
Why j2 is not scalar, the expression
(1/m)*sum((theta(1)+theta(2).*X(k,2))-y(k))
is producing scalar result which can be multiplied by
X(k,2)
to produce scalar result. But on the matlab, I've also seen the result that is going to be stored in j2 is a vector. But Why ??
Matt J
Matt J le 12 Avr 2015
k is not a scalar. You defined it to be the vector 1:m. Therefore X(k,2) is also a vector.

Connectez-vous pour commenter.

Plus de réponses (11)

Jayan Joshi
Jayan Joshi le 15 Oct 2019
Modifié(e) : Jayan Joshi le 15 Oct 2019
predictions =X*theta;
theta=theta-(alpha/m*sum((predictions-y).*X))';

Margo Khokhlova
Margo Khokhlova le 19 Oct 2015
Modifié(e) : Walter Roberson le 19 Oct 2015
Well, sort of super late, but you just made it wrong with the brackets... This one works for me:
k=1:m;
j1=(1/m)*sum((theta(1)+theta(2).*X(k,2))-y(k))
j2=(1/m)*sum(((theta(1)+theta(2).*X(k,2))-y(k)).*X(k,2))
theta(1)=theta(1)-alpha*(j1);
theta(2)=theta(2)-alpha*(j2);
  1 commentaire
Nancy Irisarri
Nancy Irisarri le 13 Mai 2019
Calculation of k can be outside the for loop. Improves performance!

Connectez-vous pour commenter.


Shekhar Raj
Shekhar Raj le 19 Sep 2019
Below Code works for me -
Prediction = X * theta;
temp1 = alpha/m * sum((Prediction - y));
temp2 = alpha/m * sum((Prediction - y) .* X(:,2));
theta(1) = theta(1) - temp1;
theta(2) = theta(2) - temp2;
  2 commentaires
Jayan Joshi
Jayan Joshi le 15 Oct 2019
Thank you this really helped. I tried more vectorized form of this and it worked.
predictions =X*theta;
theta=theta-(alpha/m*sum((predictions-y).*X))';
Lomg Ma
Lomg Ma le 24 Jan 2021
How did you manage to vectorize it that much? I don't understand how to translate the formula to code, seems confusing

Connectez-vous pour commenter.


Sesha Sai Anudeep Karnam
Sesha Sai Anudeep Karnam le 7 Août 2019
Modifié(e) : Sesha Sai Anudeep Karnam le 7 Août 2019
temp0 = theta(1)-alpha*((1/m)*(theta(1)+theta(2).*X(k,2)-y(k)));
temp1 = theta(2)- alpha*((1/m)*(theta(1)+theta(2).*X(k,2)-y(k)).*X(k,2));
theta(1) = temp0;
theta(2) = temp1;
% this code gives approximate values but while submitting I'm getting 0points for this
% Theta found by gradient descent:
% -3.588389
% 1.123667
% Expected theta values (approx)
% -3.6303
% 1.1664
% How to overcome this??
  2 commentaires
Shekhar Raj
Shekhar Raj le 19 Sep 2019
Below code gave the exact value -
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
%
Prediction = X * theta;
temp1 = alpha/m * sum((Prediction - y));
temp2 = alpha/m * sum((Prediction - y) .* X(:,2));
theta(1) = theta(1) - temp1;
theta(2) = theta(2) - temp2;
% ============================================================
Amber Hall
Amber Hall le 15 Août 2021
i've tried this code but still get error due to not enough input arguments for m = length(y) ? do you know what may be the cause as it appears i have coded correctly

Connectez-vous pour commenter.


ICHEN WU
ICHEN WU le 8 Nov 2015
Can you tell me why my answer is not correct? I felt they are the same.
theta(1)=theta(1)-(alpha/m)*sum( (X*theta)-y);
theta(2)=theta(2)-(alpha/m)*sum( ((X*theta)-y)'*X(:,2));
  5 commentaires
pavan B
pavan B le 20 Fév 2017
above one works perfect .try below code of mine too
earlier i used h = X * theta; a0 = (1/m)*sum((h-y)); a1 = (1/m)*sum((h-y)'*x1); surprisingly it didn't work
working code: x1 = X(:,2); a0 = (1/m)*sum((X * theta-y)); a1 = (1/m)*sum((X * theta-y)'*x1); a = [a0;a1]; theta = theta- (alpha*a);
if anyone find out whats wrong with my earlier code it would be appreciated.
Leon Cai
Leon Cai le 6 Avr 2017
yea I tried h = X*theta and it didn't work too, I'm thinking that when we use the variable h, as we update theta, the value of h will remain unchanged.

Connectez-vous pour commenter.


Ali Dezfooli
Ali Dezfooli le 17 Juin 2016
In this line
X = [ones(m, 1), data(:,1)];
You add bias to your X, but in the formula of your picture (Ng's slides) when you want to compute theta(2) you should remove it.

Utkarsh Anand
Utkarsh Anand le 17 Mar 2018
Looking at the problem, I also think that you cannot initiate Theta as Zero.

Rajeswari G
Rajeswari G le 2 Jan 2021
error = (X * theta) - y;
theta = theta - ((alpha/m) * X'*error);
In this equation why we take x'?
  1 commentaire
Bee Ling TAN
Bee Ling TAN le 15 Août 2021
This is because X is a 97x2 matrix. To perform dot products, only X' (2x97)will make the answer valid to be 2x1 vectors, entrys are theta(1)&theta(2) respectively.

Connectez-vous pour commenter.


Wamin Thammanusati
Wamin Thammanusati le 21 Fév 2021
Modifié(e) : Wamin Thammanusati le 21 Fév 2021
The code below works for this case (one variable) and also multiple variables -
for iter = 1:num_iters
Hypothesis = X * theta;
for i=1:size(X,2)
theta(i) = theta(i) - alpha/m * sum((Hypothesis-y) .* X(:,i));
end
end
  1 commentaire
Amber Hall
Amber Hall le 15 Août 2021
having tried the same code i am struggling to understand what i am doing wrong - i receive error due to not enough jnput arguments for m = length(y) line. do you have any ideas?

Connectez-vous pour commenter.


Chong Lu
Chong Lu le 16 Nov 2021
Modifié(e) : Walter Roberson le 27 Nov 2021
temp1 = theta(1) - alpha*(sum(X*theta - y)/m);
temp2 = theta(2) - alpha*(sum((X*theta - y).*X(:,2))/m);
theta(1) = temp1;
theta(2) = temp2;

muhammad zohaib
muhammad zohaib le 27 Nov 2021

Catégories

En savoir plus sur Logical dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by