Creating a neural network with hidden layer that has more than one activation function.
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello.
I'm trying to create a simple neural network to fit the data that I have. it's a simple forward network with one hidden layer and one output layer. I would like to make the hidden layer in a way that it has a linear part and a non-linear part. The activation function of linear part is 'purelin' and activation function of non-linear part is 'tansig'. For example half of neurans use 'purelin' and the other half use 'tansig'.
Is it even possible to do this without programming the network?
This is an example from "Due Truong Pham and Liu Xing, Neural Networks for Identification,Prediction and Control" and I'm trying to recreate the result using MATLAB.
0 commentaires
Réponses (1)
Udit06
le 30 Sep 2024
Hi,
As per my knowledge, this is not possible without programming the network.
Deep Learning Toolbox of MATLAB allows to customize the network by defining the custom layers for any deep learning model. You can refer to the following MathWorks documentation to understand more about the same:
In the template present in the above link, you can modify the "predict" and "forward" function to create a hidden layer with more than one activation function.
0 commentaires
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!