How to plot the first derivative of solution?

2 vues (au cours des 30 derniers jours)
Nauryzbay
Nauryzbay le 30 Mai 2023
Commenté : Nauryzbay le 1 Juin 2023
function Piecewise1111copy
x1=1;
u=3;
global gamma1;
gamma1=x1;
teta=zeros(3,1);
teta(1)=0;
for i=1:3
teta(i+1)=2*i;
end
for j=1:1
for k=1:u%initial_func=[x1,x2];
[t,x] = ode45(@hop4,teta(k):0.0001:teta(k+1),x1(j));
n=length(t);
x1(j)=x(n,1);
gamma1=x1(j);
hold on
figure(1)
subplot(2,1,1);
plot(t,x(:,1),'color','g','Linewidth',1)
xlabel('$$t$$','interpreter','latex','fontsize',16); ylabel('$$y$$','interpreter','latex','fontsize',16);
hold on
subplot(2,1,2);
syms x(t);
y=diff(x,t);
fplot(y,[0,6],'color','g','Linewidth',1);
xlabel('$$t$$','interpreter','latex','fontsize',16); ylabel('$$\dot{y}$$','interpreter','latex','fontsize',16);
hold on
end
end
function dx=hop4(t,x)
global gamma1;
dx(1)=1+3*gamma1;

Réponses (2)

James Tursa
James Tursa le 30 Mai 2023
After the ode45( ) call, simply pass your x solution through your derivative function to obtain the xdot values. You can either do this with a single call if your derivative function is vectorized, or you can do it in a loop.
  2 commentaires
Steven Lord
Steven Lord le 30 Mai 2023
The fact that the ODE function uses a global variable (rather than passing additional parameters into the ODE function) likely will complicate that approach.
James Tursa
James Tursa le 30 Mai 2023
As ugly as that global variable is, I don't see it being changed during the derivative call, so I don't see how that complicates calling the derivative function right after the ode45( ) call to get the derivatives.

Connectez-vous pour commenter.


Torsten
Torsten le 30 Mai 2023
Modifié(e) : Torsten le 30 Mai 2023
Piecewise1111copy()
function Piecewise1111copy
x1=1;
u=3;
teta=zeros(3,1);
teta(1)=0;
for i=1:3
teta(i+1)=2*i;
end
for j=1:1
for k=1:u%initial_func=[x1,x2];
[t,x] = ode15s(@(t,x)hop4(t,x,x1),[teta(k),teta(k+1)],x1);
hold on
figure(1)
subplot(2,1,1);
plot(t,x(:,1),'color','g','Linewidth',1)
xlabel('$$t$$','interpreter','latex','fontsize',16); ylabel('$$y$$','interpreter','latex','fontsize',16);
hold on
subplot(2,1,2);
for i=1:numel(t)
y(i) = hop4(t(i),x(i,:),x1);
end
plot(t,y,'color','g','Linewidth',1);
xlabel('$$t$$','interpreter','latex','fontsize',16); ylabel('$$\dot{y}$$','interpreter','latex','fontsize',16);
hold on
n=length(t);
x1=x(n,1);
end
end
end
function dx=hop4(t,x,x1)
dx(1)=1+3*x1;
end

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by