taylor expansion of multivariate function
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello everyone,
Would you please help me to find first-order taylor expansion of this non-linear multivariate function of 3*M variables. I try matlab tylor function for multi variable functions but I got the error that "not enough input arguments".
matlab code of this function is here:
w = [1 0 0 0];
M = length(w);
x = sym('x', [1 M]);
y = sym('y', [1 M]);
z = sym('z', [1 M]);
p0 = zeros(3, M);
a_f = @(theta, phi) 0;
for m = 1:M
f = @(theta,phi, x, y, z) (exp(1j*rho*(x(m).*sin(theta).*cos(phi) + ...
y(m).*sin(theta).*sin(phi) + z(m).*cos(theta)))).*w(m);
a_f = @(theta, phi, x, y, z) a_f(theta, phi) + f(theta, phi);
end
% Define the integrand
integrand = @(theta,phi, x, y, z) abs(a_f(theta,phi)).^2 .* sin(theta);
% Define the integration limits
theta_limits = [0,pi];
phi_limits = [0,2*pi];
% Evaluate the integral using Matlab's 'integral2' function
Denominator_phi = @(phi, x, y, z) int(@(theta) integrand(theta, phi, x, y, z), theta_limits(1), theta_limits(2));
Denominator = @(x, y, z) int(@(phi) Denominator_phi(phi, x, y, z), phi_limits(1), phi_limits(2));
% Calculate the maximum array factor
Numerator = @(x, y, z) abs(a_f(theta_max, phi_max)).^2;
% Calculate the directivity
D = @(x, y, z) 4*pi*Numerator(x,y,z) ./ Denominator(x,y,z);
L_D = taylor(D, ...
[x(1) x(2) x(3) x(4) y(1) y(2) y(3) y(4) z(1) z(2) z(3) z(4)],...
reshape(p0', 1, []), 'order', 1)
6 commentaires
Torsten
le 3 Juin 2023
Modifié(e) : Torsten
le 3 Juin 2023
syms theta phi rho theta_max phi_max real
w = [1 0 0 0];
M = length(w);
x = sym('x', [1 M]);
y = sym('y', [1 M]);
z = sym('z', [1 M]);
assume(x,'real')
assume(y,'real')
assume(z,'real')
p0 = zeros(3, M);
AF(theta,phi) = sum((exp(1j*rho*(x(1:M).*sin(theta).*cos(phi) + ...
y(1:M).*sin(theta).*sin(phi) + z(1:M).*cos(theta)))).*w(1:M))
integrand = AF(theta,phi)*AF(theta,phi)'.*sin(theta)
% Define the integration limits
theta_limits = [0,pi];
phi_limits = [0,2*pi];
Denominator = int(int(integrand,theta,theta_limits(1),theta_limits(2)),phi,phi_limits(1),phi_limits(2))
Numerator = 4*pi*AF(theta_max,phi_max)*AF(theta_max,phi_max)'
D = Numerator/Denominator
Réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


