eigen value of stochastic matrix

4 vues (au cours des 30 derniers jours)
rakesh kumar
rakesh kumar le 5 Juin 2023
Commenté : rakesh kumar le 8 Juin 2023
I wan to find eigen values and eigen vector of a stochastic matrix using Newton Raphson method.
% Define the dimensions and variables
n = 3; % Size of vectors and matrices
m = 2; % Number of matrices
P = 4; % Number of eigenvalues and tensors
maxIterations = 100; % Maximum number of iterations
tolerance = 1e-6; % Tolerance for convergence
% Initialize variables
u = ones(n*P, 1); % Initial guess for u, each column represents u1, u2, ..., uP
lambda = ones(P, 1); % Initial guess for lambda, each element represents lambda1, lambda2, ..., lambdaP
% Define the matrices and tensors
c0 = eye(P); % Example: identity matrix
A0 = magic(n); % Example: identity matrix
c = rand(P, P, m); % Example: random P x P x m tensor
A = rand(n, n, m); % Example: random n x n x m tensor
e = rand(P, P, P); % Example: random P x P x P tensor
cA=0;
for i=1:m
cA= cA+kron(c(:,:,i),A(:,:,i));
end
% Perform Newton-Raphson iteration
for iter = 1:maxIterations
% Compute the left-hand side of the equation
lhs = (kron(c0 , A0) + cA) * u;
% Compute the right-hand side of the equation
lame=0;
for p = 1:P
lame = lame+kron(lambda(p) * e(:, :, p),eye(n)) ;
end
rhs=lame*u
% Compute the residual and check for convergence
residual_1 = lhs - rhs;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initialize the variables
I=eye(n,n);
cA1=zeros(P,1);
for i=1:P
cA1(i)= u'*kron(e(:,:,i),I)*u;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
residual_2=cA1;
% Compute the residual and check for convergence
residual = [residual_1;residual_2];
if norm(residual(:)) < tolerance
disp('Converged!');
break;
end
jacobian = jac_1(A,lambda , u, n,m,P);
% Update u and lambda using the Newton-Raphson method
delta = jacobian \ residual(:);
u = u - delta(1:n*P);
lambda = lambda - delta(n*P+1:end);
% Display the current iteration and residual
disp(['Iteration: ' num2str(iter) ', Residual: ' num2str(norm(residual(:)))]);
end
uf=reshape(u,n,[])
lambdaf=lambda
but the answer I am getting is
lambdaf =
1.0e+58 *
2.7709
-1.9052
0.3483
-0.3253.
It would be very helpful if someone help me improve this code
  2 commentaires
Kautuk Raj
Kautuk Raj le 8 Juin 2023
Can you tell us what answer are you expecting?
rakesh kumar
rakesh kumar le 8 Juin 2023
the lambdaf and uf values should be small.
tlength=1;
nel=2;
kmn=1;
w=0.95;
sigma=0.6;
E0=2.0*10^11;
el=E0*ones(1,nel);
[alpha,kl]=klterm4_spanos3(w,sigma,kmn,nel);
[kk,mm]=stiffm_new(nel,el);
kk=kk(3:end,3:end);
[ka,ma]=stiffm(nel,1);
m=ma(3:end,3:end);
for t=1:kmn
for j=1:kl
[kk2(:,:,j)]=stiffm_new(nel,E0*alpha(j,:,t));
kk1(:,:,j)=kk2(3:end,3:end,j);
end
end
k00=reshape(kk1,2*nel,[]);
k=[kk k00];
k=reshape(k,2*nel,2*nel,[]);
M=kl;
p=1;
A0=k(:,:,1);
A=k(:,:,2:end);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define the dimensions and variables
n = 2*nel; % Size of vectors and matrices
%M = 2; % Number of matrices
%p = 2; % order of polynomials
P=factorial(M+p)/(factorial(M)*factorial(p));
m1 = 1; % m1th eigen value
maxIterations = 1; % Maximum number of iterations
tolerance = 1e-6; % Tolerance for convergence
% Initialize variables
u1 = ones(n*P, 1); % Initial guess for u, each column represents u1, u2, ..., uP
lambda1 = ones(P, 1); % Initial guess for lambda, each element represents lambda1, lambda2, ..., lambdaP
method=1;
c00= c_ijk(M,p,method);
e= e_ijk(M,p);
c_ijk_mat=my_cell2mat(c00,M,p);
e1=my_cell2mat_e(e,M,p);
% Define the matrices and tensors
%c0 = eye(P); % Example: identity matrix
c0 = c_ijk_mat(:,:,1);
%A0 = magic(n); % Example: identity matrix
%c = rand(P, P, M); % Example: random P x P x m tensor
c = c_ijk_mat(:,:,2:end);
%A = 10^-2*rand(n, n, M); % Example: random n x n x m tensor
% e = rand(P, P, P); % Example: random P x P x P tensor
e= e1;
[newLambda, newU] = replaceLambdaAndU(m1,P,A0);
lambda=newLambda;
u=reshape(newU,[],1);
cA=0;
for i=1:M
cA= cA+kron(c(:,:,i),A(:,:,i));
end
% Perform Newton-Raphson iteration
for iter = 1:maxIterations
% Compute the left-hand side of the equation
lhs = (kron(c0 , A0) + cA) * u;
% Compute the right-hand side of the equation
lame=0;
for p = 1:P
lame = lame+kron(lambda(p) * e(:, :, p),eye(n)) ;
end
rhs=lame*u;
% Compute the residual and check for convergence
residual_1 = lhs - rhs;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initialize the variables
I=eye(n,n);
cA1=zeros(P,1);
for i=1:P
cA1(i)= u'*kron(e(:,:,i),I)*u;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
residual_2=cA1;
% Compute the residual and check for convergence
residual = [residual_1;residual_2];
if norm(residual(:)) < tolerance
disp('Converged!');
break;
end
jacobian = jac_1(A,lambda , u, n,M,P);
% Update u and lambda using the Newton-Raphson method
delta = jacobian \ residual(:);
u = u - delta(1:n*P);
lambda = lambda - delta(n*P+1:end);
% Display the current iteration and residual
disp(['Iteration: ' num2str(iter) ', Residual: ' num2str(norm(residual(:)))]);
end
uf=reshape(u,n,[])
lambdaf=lambda
I want first elemnets of lambdaf vetor to be smallest value of eigen value of A0 and all other values of lambdaf to be smaller values than lambdaf ,of the order of 10^-2*lambdaf

Connectez-vous pour commenter.

Réponses (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by