Least Squares with constraint on absolute value

5 vues (au cours des 30 derniers jours)
L
L le 15 Juin 2023
Commenté : L le 19 Juin 2023
Hi , I need to solve a least squares values of the form
, where x is a 32x1 vector and B is a 32x32 matrix.
Howerver, x is complex and I need to constraint the solutions to make each element of vector x to have absolute value of 1.
Is that possible?
Best,

Réponse acceptée

Torsten
Torsten le 16 Juin 2023
Modifié(e) : Torsten le 16 Juin 2023
rng("default")
n = 32;
y = rand(n,1) + 1i*rand(n,1);
B = rand(n) + 1i*rand(n);
x0 = rand(n,1) + 1i*rand(n,1);
x0 = [real(x0);imag(x0)];
x0 = x0./[sqrt(x0(1:n).^2+x0(n+1:2*n).^2);sqrt(x0(1:n).^2+x0(n+1:2*n).^2)];
fun = @(x)(B*(x(1:n)+1i*x(n+1:2*n))-y)'*(B*(x(1:n)+1i*x(n+1:2*n))-y);
fun(x0)
ans = 1.2661e+04
nonlcon = @(x)deal([],x(1:n).^2+x(n+1:2*n).^2-ones(n,1));
sol = fmincon(fun,x0,[],[],[],[],[],[],nonlcon,optimset('MaxFunEvals',10000,'TolFun',1e-12,'TolX',1e-12))
Local minimum possible. Constraints satisfied. fmincon stopped because the size of the current step is less than the value of the step size tolerance and constraints are satisfied to within the value of the constraint tolerance.
sol = 64×1
0.6418 -0.9517 -0.9328 -0.8359 -0.9372 0.4603 0.7496 0.8249 0.9990 -0.2242
fun(sol)
ans = 10.3184
sol(1:n).^2+sol(n+1:2*n).^2-ones(n,1)
ans = 32×1
1.0e-15 * 0 0 -0.2220 0 0 0 0 0 0 0

Plus de réponses (1)

Matt J
Matt J le 15 Juin 2023
Modifié(e) : Matt J le 15 Juin 2023
You'll need to write the problem in terms of the real-valued components xi and xr of x,
x=xr+1i*xi
Once you do that, your absolute value constraints become quadratic,
xr^2+xi^2=1
and you can solve with fmincon.
  2 commentaires
L
L le 16 Juin 2023
Modifié(e) : L le 16 Juin 2023
Than
ks for your answer.
Is this correct?
n = @(x) vecnorm( y - B*x);
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = @unity;
x0 = zeros(32,1);
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
function [c,ceq] = unity(x)
c = real(x)^2 + 1*iimg(x)^2 - 1;
ceq = [];
end
Matt J
Matt J le 16 Juin 2023

Connectez-vous pour commenter.

Catégories

En savoir plus sur Quadratic Programming and Cone Programming dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by