maximization with fmincon which of the two codes provided do the correct job
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have the following maximization problem , solve for a_j:
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1413989/image.png)
s.t ![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1413994/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1413994/image.png)
k_j = 1x6, R_t= 6x1 , u = @(a) 1/(1-gamma)*a.^(1-gamma); gamma=2 ,
in the code W is 6x6 matrix , where each row correspond to k_j
code 1 : I have implemented as
clear all
W = csvread('optw.csv'); % Assuming W.csv contains a 6x6 matrix , where each row correspond to k_j
R = csvread('rt.csv'); % Assuming R.csv contains a 6x249 matrix
% Define the objective function
gamma = 2;
n = 6; % Number of variables (a_j)
u = @(x) 1/(1-gamma) * x.^(1-gamma);
obj = @(a) -sum(u(sum(a.* (W' * R), 1)));
% Set up optimization problem
Aeq = ones(1, n); % Equality constraint: sum_{j=1}^{j=6} a_j = 1
beq = 1; % Equality constraint value
lb = zeros(n, 1); % Lower bounds for variables a_j
ub = ones(n, 1); % Upper bounds for variables a_j
% Solve the optimization problem
options = optimoptions('fmincon', 'Display', 'iter'); % Set additional options if needed
[a_opt, fval] = fmincon(obj, ones(n, 1) / n, [], [], Aeq, beq, lb, ub, [], options);
% Display the optimal solution and objective value
disp("Optimal a_j:");
disp(a_opt');
disp("Objective value:");
disp(-fval);
however another objective function I implemented provide different results :
W = csvread('optw.csv'); % Assuming W.csv contains a 6x6 matrix
R = csvread('rt.csv'); % Assuming R.csv contains a 6x249 matrix
% Define the objective function
gamma = 2;
n = 6; % Number of variables (a_j)
u = @(x) 1/(1-gamma) * x.^(1-gamma);
obj = @(a) -sum(u(sum(a .* (W* R), 1)));
% Set up optimization problem
Aeq = ones(1, n); % Equality constraint: sum_{j=1}^{j=6} a_j = 1
beq = 1; % Equality constraint value
lb = zeros(n, 1); % Lower bounds for variables a_j
ub = ones(n, 1); % Upper bounds for variables a_j
% Solve the optimization problem
options = optimoptions('fmincon', 'Display', 'iter'); % Set additional options if needed
[a_opt, fval] = fmincon(obj, ones(n, 1) / n, [], [], Aeq, beq, lb, ub, [], options);
% Display the optimal solution and objective value
disp("Optimal a_j:");
disp(a_opt');
disp("Objective value:");
disp(-fval);
Can you please help me which objective function is doing the correct calculation based on the the problem I described former.
Thanks in advance
4 commentaires
Réponse acceptée
Torsten
le 18 Juin 2023
Modifié(e) : Torsten
le 18 Juin 2023
I suggest using a function instead of a function handle.
I compared it with your implementation and random matrices for W and R. The second code gives the same result.
function value = obj(a,W,R)
value_gamma = 2;
u = @(x) 1/(1-value_gamma) * x.^(1-value_gamma);
vec = a.'*W;
value = 0;
for i = 1:size(R,2)
value = value + u(vec*R(:,i));
end
value = -value;
end
3 commentaires
Torsten
le 19 Juin 2023
Play a little:
syms a [2,1] real
syms W [2,2] real
syms R [2,4] real
s1 = sum(a.* (W' * R))
size(s1)
s2 = sum(a.'* (W * R))
size(s2)
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Systems of Nonlinear Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!