How to plot xy, yz and xz plane contour with integration matrix equation

11 vues (au cours des 30 derniers jours)
I try to follw mt professor to plot contour plot of Rosenthal's equation, and here it my code
clear all
close all
clc
%Constant
rho = 4420; %kg/m^3
Cp = 550; %J/kg?K
T0 = 303.15; %K
A = 0.5; %[Absorbtivity]
k = 7.2; %W/m/K
alpha = 2.96*10^-6; %m^2/s
D = alpha;
P = 100; %W
v = 1; %m/s
u = v;
Tm = 1933; %K
d_laser = 0.01; %mm
r_laser = d_laser/2; %mm
a = r_laser;
p = D/(u*a);
%Define
x = linspace(-0.005,0.025,100);
y = linspace(-0.0005,0.0005,100);
z = linspace(0,0.005,100);
%Normalized
x_nor = x/a;
y_nor = y/a;
z_nor = z/(D*a/u).^0.5;
[x_mesh, y_mesh] = meshgrid(x_nor, y_nor);
[x_mesh, z_mesh] = meshgrid(x_nor, z_nor);
%Calculation
r = (x_mesh.^2 + y_mesh.^2).^0.5;
Ts = A*P/(pi*rho*Cp*sqrt(D*u*a));
T2 = T0 + (A*P)./(2*pi*k*r).*exp(v.*(r+x_mesh)./(2*D));
q = (2*A*P/(pi*a^2))*exp(-2*r.^2/a^2);
syms t
fun = @(t) exp((-z_mesh.^2./(4*t))-((y_mesh.^2+(x_mesh-t).^2)./(4*p.*t+1)))./((4.*p.*t+1).*sqrt(t));
g = int(fun,t,[0 Inf]);
%Plot x'y' plane
figure
contourf(x_mesh, y_mesh, g, [303.15:100:2000])
colorbar
title('x\primey\prime plane')
xlabel('x\prime (m)')
ylabel('y\prime (m)')
xlim([-0.005 0.025])
%Plot y'z' plane
figure
contourf(x_mesh, z_mesh, g, [303.15:100:2000])
title('x\primez\prime plane')
xlabel('x\prime (m)')
ylabel('z\prime (m)')
xlim([-0.005 0.025])
  4 commentaires
Torsten
Torsten le 26 Juin 2023
Modifié(e) : Torsten le 26 Juin 2023
So g should be a three-dimensional array where the first dimension refers to x, the second dimension refers to y and the third dimension refers to z ? Then, to plot in the xy plane, e.g., you want to choose a value "z(iz)" and plot g(:,:,iz) against the x- and y-array ? That's not what you do in your code.
Pannawat Pongsriassawin
Pannawat Pongsriassawin le 26 Juin 2023
yeah, actualy output (g) should be 100x100x100, but it is g(:,:,1), g(:,:,2), ..., g(:,:,100) then it can plot it into 2D plane contour. I don't know how to solve it. I think g(:,:,1) mean g(1:100,1:100,1) then it is g in z=1 plane? If it is, that what I desired.Actual it can't plot or Should I use aother command to plot it?

Connectez-vous pour commenter.

Réponse acceptée

Torsten
Torsten le 26 Juin 2023
Modifié(e) : Torsten le 26 Juin 2023
clear all
close all
clc
%Constant
rho = 4420; %kg/m^3
Cp = 550; %J/kg?K
T0 = 303.15; %K
A = 0.5; %[Absorbtivity]
k = 7.2; %W/m/K
alpha = 2.96*10^-6; %m^2/s
D = alpha;
P = 100; %W
v = 1; %m/s
u = v;
Tm = 1933; %K
d_laser = 0.01; %mm
r_laser = d_laser/2; %mm
a = r_laser;
p = D/(u*a);
%Define
x = linspace(-0.005,0.025,100);
y = linspace(-0.0005,0.0005,100);
z = linspace(0,0.005,100);
%Normalized
x_nor = x/a;
y_nor = y/a;
z_nor = z/(D*a/u).^0.5;
[x_mesh,y_mesh,z_mesh] = ndgrid(x_nor,y_nor,z_nor);
fun = @(t) exp((-z_mesh.^2./(4*t))-((y_mesh.^2+(x_mesh-t).^2)./(4*p.*t+1)))./((4.*p.*t+1).*sqrt(t));
g = integral(fun,0,Inf,'ArrayValued',true);
figure(1)
iz = 1;
contourf(y_nor,x_nor,squeeze(g(:,:,iz)))
colorbar
figure(2)
iy = 1;
contourf(z_nor,x_nor,squeeze(g(:,iy,:)))
colorbar
figure(3)
ix = 1;
contourf(z_nor,y_nor,squeeze(g(ix,:,:)))
colorbar
  1 commentaire
Pannawat Pongsriassawin
Pannawat Pongsriassawin le 17 Juil 2023
OK, thank you. I had adjust and chang some code, very kind of you to inspired me something.

Connectez-vous pour commenter.

Plus de réponses (1)

Sarthak
Sarthak le 27 Juin 2023
Hello Pannawat,
You can plot the contour by using the meshgrid and surf functions which are available in MATLAB.
[X,Y] = meshgrid(x,y); % Create a grid from x and y vectors
z = zeros(size(x, 1)); % Generate z data
surf(x, y, z); % Plot the contour
You can also refer to the MATLAB Answer provided below for further information.
Hope this helps!!

Produits


Version

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by