How to solve a system of distributed delay equations?
86 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have a code, which gives a solution of a system of discrete delay equations.
This is how I run it
lags=1;
tspan=[0 600];
sol=ddesd(@ddefunc,lags,[0.2; 0.08],tspan);
p=plot(sol.x,sol.y);
set(p,{'LineWidth'},{2;2})
title('y(t)')
xlabel('Time(days)'), ylabel('populations')
legend('x','y')
and this is the function
function yp = ddefunc(~,y,Z)
a=0.1;
b=0.05;
c=0.08;
d=0.02;
yl1=Z(:,1);
yp = [a*y(1)-b*y(1)*yl1(2);
c*y(1)*y(2)-d*y(2)];
end
Now, instead of one discrete delay value, I would like to consider a continuous delay values. That is, instead of , . Would it be possible to do this? Thanks!
0 commentaires
Réponse acceptée
Torsten
le 29 Juin 2023
Modifié(e) : Torsten
le 29 Juin 2023
As a start, you could define three delays, namely delay(1) = tau-gamma, delay(2) = tau and delay(3) = tau+gamma, and approximate the integral as "gamma * ( Z(:,1)/2 + Z(:,2) + Z(:,3)/2 )" (trapezoidal rule with three points).
In principle, you can approximate the integral arbitrarily close by choosing a sufficient number of delays:
tau = 1;
gamma = 0.5;
number_of_delays = 11; % should be odd
lags = linspace(tau-gamma,tau+gamma,number_of_delays);
tspan=[0 600];
sol=ddesd(@(t,y,Z)ddefunc(t,y,Z,lags),lags,[0.2; 0.08],tspan);
p=plot(sol.x,sol.y);
set(p,{'LineWidth'},{2;2})
title('y(t)')
xlabel('Time(days)'), ylabel('populations')
legend('x','y')
function yp = ddefunc(~,y,Z,lags)
a=0.1;
b=0.05;
c=0.08;
d=0.02;
yl1 = trapz(lags,Z(2,:));
yp = [a*y(1)-b*y(1)*yl1;
c*y(1)*y(2)-d*y(2)];
end
18 commentaires
Torsten
le 5 Nov 2024 à 19:45
lags1 = linspace(0,2r_1,number_of_delays_1);
lags2 = linspace(0,2r_2,number_of_delays_2);
lags3= @(t)[t-(cos(t)+2),t-pi/2,t-1];
lags = @(t,y)[t-lags1,t-lags2,lags3(t)];
sol = ddesd(@(t,y,Z)ddefunc(t,y,Z,lags1,number_of_delays_1,lags2,number_of_delays_2,lags3),lags,initialcondition,tspan);
function dydt = ddefunc(t,y,Z,lags1,number_of_delays_1,lags2,number_of_delays_2,lags3)
yl1 = trapz(lags1,Z(:,1:number_of_delays_1)); % First distributed delay
yl2 = trapz(lags2,Z(:,number_of_delays_1+1:number_of_delays_1+number_of_delays_2)); % Second distributed delay
ylag1 = Z(:,number_of_delays_1+number_of_delays_2+1); % ¿Evaluate the solution in the first delay of the list lags3?
ylag2 = Z(:,number_of_delays_1+number_of_delays_2+2); % ¿Evaluate the solution in the second delay of the list lags3?
dydt =-ylag1+yl1-ylag2+yl2;
end
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Digital Filter Analysis dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!