give me comment to the coding lines, like what do they do
9 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
%Comment 1:
load iris.dat
%Comment 2:
setosaIndex = iris (:,5)==1;
versicolorIndex = iris (:,5) ==2;
virginicaIndex = iris (:, 5) ==3;
%Comment 3:
setosa = iris (setosaIndex, :) ;
versicolor = iris (versicolorIndex,:);
virginica - iris (virginicaIndex, :);
%Comment 4:
Characteristics = ('sepal length', 'sepal width', 'petal
length', 'petal width');
pairs = (1 2; 1 3; 1 4; 2 3; 2 4; 3 4];
%Comment 5:
for 1 = 1:6
x = pairs (i, 1);
y = pairs (1, 2);
IrisData subplot (2,3,1)
plot ([setosa (:,x) versicolor (:,x) virginica (:,*)l, setosa (:,y) versicolor (:,y) virginica (:,y)]
xlabel (Characteristics (x))
ylabel (Characteristics (y))
end
saveas (IrisData, 'IrisData. jpg');
%Comment 6;
Nc = 3;
M = 2.0;
maxIter 100;
minImprove = Le-6;
%Comment 7;
clusteringOptions = (M maxIter minImprove truel;
%Comment 8:
[centers, U] - fcm(iris, Ne, clusteringOptions) ;
%Comment 9:
for i = 1:6
ClusteredIrisData=subplot. (2, 3, i);
for i = 1:Nc
X = pairs (i, 1);
Y = pairs (i, 2);
text (centers (j,×), centers (j, y) , int2str (j) , 'Fontweight', 'bold');
end
end
%Comment 10:
saveas (ClusteredIrisData, 'clusteredirisData. jpg' ) ;
0 commentaires
Réponses (1)
Vishnu
le 12 Juil 2023
Hi RAHMAN,
Here are comments explaining what each line of code does:
%Comment 1: Load the iris.dat dataset
load iris.dat
%Comment 2: Create logical indices for each class of iris flowers
setosaIndex = iris(:, 5) == 1;
versicolorIndex = iris(:, 5) == 2;
virginicaIndex = iris(:, 5) == 3;
%Comment 3: Extract data for each class of iris flowers
setosa = iris(setosaIndex, :);
versicolor = iris(versicolorIndex, :);
virginica = iris(virginicaIndex, :);
%Comment 4: Define characteristics and pairs of characteristics for plotting
Characteristics = {'sepal length', 'sepal width', 'petal length', 'petal width'};
pairs = [1 2; 1 3; 1 4; 2 3; 2 4; 3 4];
%Comment 5: Plot data for each pair of characteristics
for i = 1:6
x = pairs(i, 1);
y = pairs(i, 2);
IrisData = subplot(2, 3, 1);
plot([setosa(:, x) versicolor(:, x) virginica(:, x)], [setosa(:, y) versicolor(:, y) virginica(:, y)]);
xlabel(Characteristics{x});
ylabel(Characteristics{y});
end
saveas(IrisData, 'IrisData.jpg');
%Comment 6: Set parameters for fuzzy C-means clustering
Nc = 3;
M = 2.0;
maxIter = 100;
minImprove = 1e-6;
%Comment 7: Define clustering options
clusteringOptions = [M maxIter minImprove true];
%Comment 8: Perform fuzzy C-means clustering on the iris dataset
[centers, U] = fcm(iris, Nc, clusteringOptions);
%Comment 9: Plot clustered data for each pair of characteristics
for i = 1:6
ClusteredIrisData = subplot(2, 3, i);
for j = 1:Nc
X = pairs(i, 1);
Y = pairs(i, 2);
text(centers(j, X), centers(j, Y), int2str(j), 'Fontweight', 'bold');
end
end
%Comment 10: Save the plot of clustered iris data
saveas(ClusteredIrisData, 'clusteredirisData.jpg');
These comments provide a brief explanation of each line of code and its purpose within the script.
0 commentaires
Voir également
Catégories
En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!