surf plot is required
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
MINATI PATRA
le 25 Juil 2023
Commenté : Mrutyunjaya Hiremath
le 25 Juil 2023
A = 1; M = 1; Da = 0.1; L = 0.1; Pr = 1; Nb = 0.1; Nt = 0.5; s = 0.5; Le = 2; Kc = 1;B = 0.5;Lv = linspace(-2,2,100);
for M = [0 1 2]
for i = 1:length(Lv)
L = Lv(i);
ODE = @(x,y) [ y(2); y(3); y(2)^2 - y(1)*y(3) - A^2 + (M+Da)*(y(2)-A) - L*y(4);
y(5); -Pr*( y(1)*y(5) + Nb*y(5)*y(7) + Nt*y(5)^2 + s*y(4) )
y(7); -Le*Pr*(y(1)*y(7) - Kc*y(6)) + (Nt/Nb)*Pr*( y(1)*y(5) + Nb*y(5)*y(7) + Nt*y(5)^2 + s*y(4) )];
BC = @(ya,yb)[ya(1); ya(2)-1; ya(5)-B*(ya(4)-1); Nb*ya(7)+Nt*ya(5); yb(2)-A; yb([4,6])]; xa = 0; xb = 6;
x = linspace(xa,xb,100); solinit = bvpinit(x,[0 1 0 1 0 1 0]); sol = bvp5c(ODE,BC,solinit); S = deval(sol,x);
figure(1),surf(x,Lv,[1;1]*S(2,:));hold on;xlabel('\bfx','Color','blue'); ylabel('\bfL','Color','blue');
zlabel '\bfS(2,:)';
end
end
%%% Want to draw surf plot of S(2,:) with 'x' as x-axis variation, 'L' as y-axis variation
0 commentaires
Réponse acceptée
Voss
le 25 Juil 2023
Like this?
A = 1; M = 1; Da = 0.1; L = 0.1; Pr = 1; Nb = 0.1; Nt = 0.5; s = 0.5; Le = 2; Kc = 1;B = 0.5;
xa = 0; xb = 6;
Lv = linspace(-2,2,100);
x = linspace(xa,xb,100);
S_all = zeros(numel(Lv),numel(x));
for M = [0 1 2]
for i = 1:numel(Lv)
L = Lv(i);
ODE = @(x,y) [ y(2); y(3); y(2)^2 - y(1)*y(3) - A^2 + (M+Da)*(y(2)-A) - L*y(4);
y(5); -Pr*( y(1)*y(5) + Nb*y(5)*y(7) + Nt*y(5)^2 + s*y(4) )
y(7); -Le*Pr*(y(1)*y(7) - Kc*y(6)) + (Nt/Nb)*Pr*( y(1)*y(5) + Nb*y(5)*y(7) + Nt*y(5)^2 + s*y(4) )];
BC = @(ya,yb)[ya(1); ya(2)-1; ya(5)-B*(ya(4)-1); Nb*ya(7)+Nt*ya(5); yb(2)-A; yb([4,6])];
solinit = bvpinit(x,[0 1 0 1 0 1 0]);
sol = bvp5c(ODE,BC,solinit);
S = deval(sol,x);
S_all(i,:) = S(2,:);
end
figure()
surf(x,Lv,S_all);
hold on;
xlabel('\bfx','Color','blue');
ylabel('\bfL','Color','blue');
zlabel('\bfS(2,:)');
title(sprintf('M = %d',M));
end
0 commentaires
Plus de réponses (1)
Mrutyunjaya Hiremath
le 25 Juil 2023
To create the surface plot for the given code, you can use the MATLAB 'surf' function inside the loop. However, you need to be careful about the input arguments to the 'surf' function to ensure that the data is correctly plotted.
- Here's the modified code with the surf plot:
A = 1; M = 1; Da = 0.1; Pr = 1; Nb = 0.1; Nt = 0.5; s = 0.5; Le = 2; Kc = 1; B = 0.5;
Lv = linspace(-2, 2, 100);
figure(1);
hold on;
xlabel('\bfx', 'Color', 'blue');
ylabel('\bfL', 'Color', 'blue');
zlabel('\bfS(2,:)');
for M = [0, 1, 2]
for i = 1:length(Lv)
L = Lv(i);
ODE = @(x, y) [ y(2); y(3); y(2)^2 - y(1)*y(3) - A^2 + (M + Da)*(y(2) - A) - L*y(4);
y(5); -Pr*(y(1)*y(5) + Nb*y(5)*y(7) + Nt*y(5)^2 + s*y(4))
y(7); -Le*Pr*(y(1)*y(7) - Kc*y(6)) + (Nt/Nb)*Pr*(y(1)*y(5) + Nb*y(5)*y(7) + Nt*y(5)^2 + s*y(4))];
BC = @(ya, yb) [ya(1); ya(2) - 1; ya(5) - B*(ya(4) - 1); Nb*ya(7) + Nt*ya(5); yb(2) - A; yb([4, 6])];
xa = 0; xb = 6;
x = linspace(xa, xb, 100);
solinit = bvpinit(x, [0, 1, 0, 1, 0, 1, 0]);
sol = bvp5c(ODE, BC, solinit);
S = deval(sol, x);
surf(x, Lv(i)*ones(size(x)), [1; 1]*S(2, :));
end
end
hold off;
- This code should create a surface plot showing the variation of S(2,:) with respect to x and L for different values of M. The surf function is used to plot the data, and we use Lv(i)*ones(size(x)) to create a meshgrid for the surf plot, with Lv(i) repeated for the entire x range.
2 commentaires
Mrutyunjaya Hiremath
le 25 Juil 2023
clc;
close all;
clear all;
A = 1; M = 1; Da = 0.1; Pr = 1; Nb = 0.1; Nt = 0.5; s = 0.5; Le = 2; Kc = 1; B = 0.5;
Lv = linspace(-2, 2, 100);
figure(1);
hold on;
xlabel('\bfx', 'Color', 'blue');
ylabel('\bfL', 'Color', 'blue');
zlabel('\bfS(2,:)');
for M_val = [0, 1, 2]
for i = 1:length(Lv)
L = Lv(i);
ODE = @(x, y) [ y(2); y(3); y(2)^2 - y(1)*y(3) - A^2 + (M_val + Da)*(y(2) - A) - L*y(4);
y(5); -Pr*(y(1)*y(5) + Nb*y(5)*y(7) + Nt*y(5)^2 + s*y(4))
y(7); -Le*Pr*(y(1)*y(7) - Kc*y(6)) + (Nt/Nb)*Pr*(y(1)*y(5) + Nb*y(5)*y(7) + Nt*y(5)^2 + s*y(4))];
BC = @(ya, yb) [ya(1); ya(2) - 1; ya(5) - B*(ya(4) - 1); Nb*ya(7) + Nt*ya(5); yb(2) - A; yb([4, 6])];
xa = 0; xb = 6;
x = linspace(xa, xb, 100);
solinit = bvpinit(x, [0, 1, 0, 1, 0, 1, 0]);
sol = bvp5c(ODE, BC, solinit);
S = deval(sol, x);
% Use meshgrid to create a 2D grid of x and Lv(i) values
[X, Y] = meshgrid(x, Lv(i)*ones(size(x)));
% Reshape [1; 1]*S(2, :) to match the size of the grid
Z = repmat([1]*S(2, :), size(X, 1), 1);
surf(X, Y, Z);
end
end
hold off;
% Enable interactive rotation of the 3D plot
rotate3d on;
% Set the initial view to a 45-degree rotation
view(45, 45);
Voir également
Catégories
En savoir plus sur Surface and Mesh Plots dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!