I want to plot Basin of attraction. I have written a few line of code given below.Please help some one
23 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
clear all
clc;
r1=0.8; K1=8;c1=0.12; alpha1=0.505;alpha2=0.5;gamma=0.25;d1=0.2;
r2=0.5;c2=0.22; K2=8;k=1;beta=0.27;lambda=1.07;d=0.3;h=1.2;
f=r1*x(1)-(c1*(x(1))^2)/(k1+alpha1*x(2));
g=(r2*(x(2))^2)/(1+k*x(3))-(c2*(x(2))^2)/(k2+alpha2*x(1)*x(2))-(beta*(x(2))^2*x(3))/(beta*h*(x(2))^2+x(2)+gamma);...
h=(lamda*beta*(x(2))^2*x(3))/(beta*h*(x(2))^2+x(2)+gamma)-d*x(3)-d1*x(3)^2;
[x0 y0 z0] = meshgrid(0:0.01:310, 0:0.02:100, 0:0.02:30)
distance = sqrt((x - 306.33859).^2 + (y - 75.150076).^2 + (z -3.29535).^2);
error=0.001;
for i = 1:numel(x0)
x = x0(i);
y = y0(i);
z = z0(i);
if distance <error
basin(i)= 1;
end
end
[t, sol] = ode45(@(t, y) [f; g; h], [0, 1000], [x; y; z]);
3 commentaires
Réponses (1)
Sam Chak
le 5 Août 2023
Modifié(e) : Sam Chak
le 5 Août 2023
I'm unsure if the basin of attraction exists or not because a random sampling of the initial conditions in the ranges , , shows that the trajectories diverge to infinity as time t goes to some finite value. Could you perform a stability analysis on the system? The origin seems to be the equilibrium.
Update: Found a stable equilibrium near the center of this region. You should be able to find the basin of attraction.
opts = odeset('RelTol', 1e-4, 'AbsTol', 1e-6);
% initial condition
numP = 9;
x0 = linspace( 18.3, 28.3, numP);
y0 = linspace(-13.9, -3.9, numP);
z0 = linspace( 0.2, 10.2, numP);
[cx, cy, cz] = ndgrid(x0, y0, z0);
combs = [cx(:), cy(:), cz(:)];
for j = 1:length(combs)
[t, sol] = ode45(@odefcn, [0, 1056], combs(j, :), opts);
x = sol(:,1);
y = sol(:,2);
z = sol(:,3);
plot3(x, y, z, 'color', '#f99954'), hold on
end
grid on, xlabel('x'), ylabel('y'), zlabel('z')
axis square
axis([18 28 -14 -4 0 10])
% the system
function dxdt = odefcn(t, x)
r1 = 0.8;
k1 = 8;
c1 = 0.12;
alpha1 = 0.505;
alpha2 = 0.5;
gamma = 0.25;
d1 = 0.2;
r2 = 0.5;
c2 = 0.22;
k2 = 8;
k = 1;
beta = 0.27;
lambda = 1.07;
d = 0.3;
h = 1.2;
f = r1*x(1) - (c1*x(1)^2)/(k1 + alpha1*x(2));
g = (r2*x(2)^2)/(1 + k*x(3)) - (c2*x(2)^2)/(k2 + alpha2*x(1)*x(2)) - (beta*(x(2)^2)*x(3))/(beta*h*x(2)^2 + x(2) + gamma);
h = (lambda*beta*(x(2)^2)*x(3))/(beta*h*(x(2)^2) + x(2) + gamma) - d*x(3) - d1*x(3)^2;
dxdt = [f;
g;
h];
end
5 commentaires
Sam Chak
le 6 Août 2023
Can you click this button and insert your MATLAB code here? So that it can be tested when the Run button is clicked.
Voir également
Catégories
En savoir plus sur Particle & Nuclear Physics dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!