Two conditions and not same.

4 vues (au cours des 30 derniers jours)
anuradha verma
anuradha verma le 14 Août 2023
Réponse apportée : Voss le 14 Août 2023
clear all;
clc;
close all;
sigma = 1;
snrdb = 0:5:40;
p =10^4* 10.^(snrdb/10);
eta = 0.5;
u = 0.55;
yth = 0.1;
alp = 0.4;
R = 1;
h = 2;
eb = 0.1;
m = 2;
T = 1;
pth = 2;
for i= 1:length(snrdb)
j=0;k=0;
M=100000;
A = (yth * sigma) ./ p(i);
B = pth ./ p(i);
C = (yth * T * sigma * (1 - alp)) / (eta * alp * T * p(i) * 2 * (1 - u));
D = eb / (eta * alp * T * p(i));
for N= 1:1:M
c=gamrnd(2,0.5,1);
d2=2;
a=gamrnd(1,1,1);
d1=gamrnd(1,1,1);
snr=a/d1^2;
snr1 = (C .* d2.^2) / (B + D);
snr2 = (C .* d2.^2) / (A + D);
lower_limit = ((C * d2^2 - D * c) * d1^2) / c;
upper_limit = (pth * d1^2) / p(i);
if (a > lower_limit && c > 0.1 && c < 2)
j=j+1;
else
j=j;
end
if (a < lower_limit && c > 0.1 && c < 2)
k=k+1;
else
k=k;
end
end
pout(i)=(j/M);
pout1(i)=k/M;
pout2(i)=1-pout1(i);
end
semilogy(snrdb,pout,'-y','LineWidth',0.6,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',6)
hold on
semilogy(snrdb,pout2,'--r','LineWidth',0.6,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',6)
From the above code value of pout and pout2 must be same, but i am getting different values. PLEASE resolve this.
  2 commentaires
Dyuman Joshi
Dyuman Joshi le 14 Août 2023
"From the above code value of pout and pout2 must be same"
Why must the values be same? Their definitions are different.
anuradha verma
anuradha verma le 14 Août 2023
Herein condition 1.----if (a > lower_limit && c > 0.1 && c < 2)
condition 2 ------ if (a < lower_limit && c > 0.1 && c < 2)
also i have substracted one in pout2

Connectez-vous pour commenter.

Réponse acceptée

Voss
Voss le 14 Août 2023
pout(i)=(j/M);
pout1(i)=k/M;
pout2(i)=1-pout1(i);
So pout2(i) is 1-(k/M), which is (M-k)/M, right?
So in saying that pout and pout2 must be the same, apparently you believe that M-k must equal j. Do you imagine that the sum of j and k will always be M because the two if conditions are opposite of each other, so that if one is true the other must be false (and vice versa)? In other words, do you imagine that exactly one of j and k (but not both) will be incremented each time through the loop? If that's what you are thinking, it is not the case.
Consider what happens if a == lower_limit or c <= 0.1 or c >= 2. In those situations, neither if condition is true, so neither j nor k is incremented.
Here is your code, with some logic added to keep track of how many times both if conditions are false. You'll see below that it happens about 11% of the time, and it exactly explains the gap you see between the lines.
clear all;
clc;
close all;
sigma = 1;
snrdb = 0:5:40;
p =10^4* 10.^(snrdb/10);
eta = 0.5;
u = 0.55;
yth = 0.1;
alp = 0.4;
R = 1;
h = 2;
eb = 0.1;
m = 2;
T = 1;
pth = 2;
for i= 1:length(snrdb)
j=0;k=0;
M=100000;
A = (yth * sigma) ./ p(i);
B = pth ./ p(i);
C = (yth * T * sigma * (1 - alp)) / (eta * alp * T * p(i) * 2 * (1 - u));
D = eb / (eta * alp * T * p(i));
missing_counts(i) = 0;
for N= 1:1:M
c=gamrnd(2,0.5,1);
d2=2;
a=gamrnd(1,1,1);
d1=gamrnd(1,1,1);
snr=a/d1^2;
snr1 = (C .* d2.^2) / (B + D);
snr2 = (C .* d2.^2) / (A + D);
lower_limit = ((C * d2^2 - D * c) * d1^2) / c;
upper_limit = (pth * d1^2) / p(i);
if (a > lower_limit && c > 0.1 && c < 2)
incremented_j = true;
j=j+1;
else
j=j;
incremented_j = false;
end
if (a < lower_limit && c > 0.1 && c < 2)
incremented_k = true;
k=k+1;
else
k=k;
incremented_k = false;
end
% neither j nor k incremented this time -> add 1 to missing_counts(i)
if ~incremented_j && ~incremented_k
missing_counts(i) = missing_counts(i)+1;
end
end
pout(i)=(j/M);
pout1(i)=k/M;
pout2(i)=1-pout1(i);
% Note: missing_counts(i) == M-(j+k)
fprintf('"Missing" count: %d\n',missing_counts(i));
end
"Missing" count: 10922 "Missing" count: 10981 "Missing" count: 11058 "Missing" count: 10801 "Missing" count: 10894 "Missing" count: 10936 "Missing" count: 10988 "Missing" count: 10932 "Missing" count: 10706
semilogy(snrdb,pout,'-y','LineWidth',0.6,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',6)
hold on
semilogy(snrdb,pout2,'--r','LineWidth',0.6,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',6)
The difference between pout2 and pout (scaled up by M) matches those "missing" counts exactly:
format short g
(pout2-pout)*M
ans = 1×9
1.0e+00 * 10922 10981 11058 10801 10894 10936 10988 10932 10706

Plus de réponses (0)

Catégories

En savoir plus sur Programming dans Help Center et File Exchange

Produits


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by