Help revise the code
26 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
% Given constants
q = 0.2;
alpha = 0.7;
gamma = 0.1;
K_bar = 1;
z_hat = 1.1;
eta = 0.2;
% Define the range of epsilon values
epsilon_range = 0.1:0.01:1;
% Preallocate array to store z_star values
z_star_values = zeros(size(epsilon_range));
% Define the options for fsolve
options = optimoptions('fsolve', 'Display', 'off', 'TolFun', 1e-6);
for i = 1:length(epsilon_range)
epsilon_val = epsilon_range(i);
% Define the equation for fsolve
equation = @(z_star) shooting_equation(z_star, epsilon_val, q, alpha, gamma, K_bar, z_hat, eta);
% Solve for z_star using fsolve
z_star_initial_guess = 0.5; % Initial guess for z_star
z_star_values(i) = fsolve(equation, z_star_initial_guess, options);
end
% Plot z_star as a function of epsilon
figure;
plot(epsilon_range, z_star_values, 'b', 'LineWidth', 2);
xlabel('\epsilon');
ylabel('z^*');
title('Plot of z^* as a Function of \epsilon');
grid on;
function value = shooting_equation(z_star, epsilon, q, alpha, gamma, K_bar, z_hat, eta)
value = z_star - z_star * (((1 - alpha) * epsilon) / (1 - alpha * epsilon))^((1 - epsilon) / epsilon) ...
- q^((1 - epsilon) / epsilon) * (K_bar)^((epsilon - 1) / epsilon) ...
* (1)^((epsilon - 1) / (alpha * epsilon)) * ((1 - alpha) / alpha)^((1 - alpha) * (epsilon - 1) / (alpha * epsilon)) ...
* (epsilon)^(((1 - epsilon + alpha * epsilon) * (1 - epsilon)) / (alpha * epsilon^2)) ...
* ((alpha) / (1 - alpha * epsilon))^((1 - epsilon) / epsilon) ...
* (alpha * epsilon)^((epsilon - 1) / (alpha * epsilon^2)) ...
* (((1 - epsilon) / (0 - 2))^((1 - epsilon) * (epsilon - 1 + alpha * epsilon) / (alpha * epsilon^2))) ...
* ((((2)^(1 / (1 - epsilon)) - (z_hat + eta)^(1 / (1 - epsilon))) + (((z_hat - eta)^(1 / (1 - epsilon))) - (z_star)^(1 / (1 - epsilon))) ...
+ ((1 - gamma)^(epsilon / (1 - epsilon))) * (((z_hat + eta)^(1 / (1 - epsilon))) - ((z_hat - eta)^(1 / (1 - epsilon))))) ...
^((1 - epsilon) * (epsilon - 1 + alpha * epsilon) / (alpha * epsilon^2)) - z_star;
end
0 commentaires
Réponses (1)
Walter Roberson
le 22 Août 2023
starting from the beginning of
* ((((2)^(1 / (1 - epsilon)) - (z_hat + eta)^(1 / (1 - epsilon))) + (((z_hat - eta)^(1 / (1 - epsilon))) - (z_star)^(1 / (1 - epsilon))) ...
you have one extra ( that does not have a matching )
value = z_star - z_star * (((1 - alpha) * epsilon) / (1 - alpha * epsilon))^((1 - epsilon) / epsilon) - q^((1 - epsilon) / epsilon) * (K_bar)^((epsilon - 1) / epsilon) * (1)^((epsilon - 1) / (alpha * epsilon)) * ((1 - alpha) / alpha)^((1 - alpha) * (epsilon - 1) / (alpha * epsilon)) * (epsilon)^(((1 - epsilon + alpha * epsilon) * (1 - epsilon)) / (alpha * epsilon^2)) * ((alpha) / (1 - alpha * epsilon))^((1 - epsilon) / epsilon) * (alpha * epsilon)^((epsilon - 1) / (alpha * epsilon^2)) * (((1 - epsilon) / (0 - 2))^((1 - epsilon) * (epsilon - 1 + alpha * epsilon) / (alpha * epsilon^2))) * ((((2)^(1 / (1 - epsilon)) - (z_hat + eta)^(1 / (1 - epsilon))) + (((z_hat - eta)^(1 / (1 - epsilon))) - (z_star)^(1 / (1 - epsilon))) + ((1 - gamma)^(epsilon / (1 - epsilon))) * (((z_hat + eta)^(1 / (1 - epsilon))) - ((z_hat - eta)^(1 / (1 - epsilon)))))^((1 - epsilon) * (epsilon - 1 + alpha * epsilon) / (alpha * epsilon^2)) - z_star;
% 123 2 1 2 10 12 1 0 12 1 0 1 0 12 1 0 1 0 12 1 2 10 12 1 0 12 1 2 1 2 10 1 0 123 2 3 21 2 10 12 1 2 10 12 1 0 1 0 12 1 2 10 123 2 3 21 23 2 3 2 3 210 1234 3 4 5 43 4 3 4 5 432 345 4 5 6 543 4 3 4 5 432 34 3 4 5 432 345 4 5 6 543 45 4 5 6 54321 23 2 3 2 3 21
The number under each bracket is the number of open brackets in effect "after" the character above the number.
2 commentaires
Walter Roberson
le 22 Août 2023
No, I cannot do that, as I do not know what the correct equations are.
I highly recommend that you break the function up into multiple statements, instead of using one long long line of code.
That would also allow you to do optimizations such as calculating alpha * epsilon and 1-epsilon into variables so that those expressions do not need to be calculated multiple times.
Using a long line of source is harder for humans to read, and harder for MATLAB to analyze the flow of. And tends to involve calculating the same sub-expression multiple times unnecessarily.
Voir également
Catégories
En savoir plus sur Gamma Functions dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!