Regression Learner App - relative weights of variables
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
lauzof
le 22 Août 2023
Réponse apportée : lauzof
le 30 Août 2023
Hello everyone,
I've been using the Regression Learner App to train a model. Can anyone tell me how can I check the relative weights that the model assigns to every predictor variable?
thanks a lot,
best,
Laura
0 commentaires
Réponse acceptée
Kevin Holly
le 22 Août 2023
Assuming that you exported your trained model as the variable trainedModel and that you have a linear model, you can access a table that has the coefficient estimates of the predictor variables as such:
trainedModel.LinearModel.Coefficients
You could extract those values by typing:
trainedModel.LinearModel.Coefficients.Estimate
You could also determine which of the predictors seemed to have the most impact by using something like LIME (Local Interpretable Model-Agnostic Explanations).
r=lime(trainedModel.predictFcn,train_data,'type','Regression');
qp=train_data(1,:);
r2=fit(r,qp,3);
plot(r2);
3 commentaires
Kevin Holly
le 23 Août 2023
Try this:
load('TrainedRegressionModel.mat')
load('tbl_training.mat')
r = lime(trainedModel.RegressionGP,tbl_training,'Type','regression');
qp=tbl_training(1,:); % This is the query point.
r2=fit(r,qp,4); % You had 4 predictors, so I changed 3 to 4
plot(r2);
r = lime(trainedModel.RegressionGP,tbl_training,'Type','regression');
qp=tbl_training(10,:); % This is the query point.
r2=fit(r,qp,4); % You had 4 predictors, so I changed 3 to 4
plot(r2);
Plus de réponses (1)
Voir également
Catégories
En savoir plus sur Gaussian Process Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!