Crank-Nicholson method for solving telegraph quation

12 vues (au cours des 30 derniers jours)
HD
HD le 30 Août 2023
Modifié(e) : Torsten le 23 Sep 2023
Hello,
I'm trying to solve telegraph equation (transmission line) using Crank-Nicholson in MATLAB, but I'm stuck with Crank-Nicholson difference scheme. Can someone help?
I'm using simplified model
  6 commentaires
Torsten
Torsten le 31 Août 2023
Modifié(e) : Torsten le 31 Août 2023
You can try this, but it's not Crank-Nicolson. I'd call it Explicit Euler.
HD
HD le 1 Sep 2023
So can i write it like this
My question now is can I substitute in (2) using (1) and how can I write ?
If i use this eq , and if i write what is correct way to write ? Thanks

Connectez-vous pour commenter.

Réponses (1)

Torsten
Torsten le 1 Sep 2023
Déplacé(e) : Torsten le 1 Sep 2023
It's unusual that the lower index denotes the time discretization - thus I will write y_{i}^{n} for y at time t(n) in grid point x(i).
Your CN discretization reads
(u_{i}^{n+1}-u_{i}^{n})/dt = (v_{i}^(n+1)+v_{i}^{n})/2
(v_{i}^{n+1}-v_{i}^{n})/dt = 1/(LC) * (u_{i+1}^{n+1}-2*u_{i}^{n+1}+u_{i-1}^{n+1} + u_{i+1}^{n}-2*u_{i}^{n}+u_{i-1}^{n})/(2*dx^2)
or
u_{i}^{n+1}/dt - v_{i}^(n+1)/2 = u_{i}^{n}/dt +v_{i}^{n}/2
-1/(LC)*(u_{i-1}^{n+1}-2*u_{i}^{n+1}+u_{i+1}^{n+1})/(2*dx^2) + v_{i}^{n+1}/dt = v_{i}^{n}/dt + 1/LC*(u_{i+1}^{n}-2*u_{i}^{n}+u_{i-1}^{n})/(2*dx^2)
This is a system of linear equations in the unknowns u_{i}^{n+1} and v_{i}^{n+1} (2<=i<=nx-1).
For indices i = 1 and i = nx, you have to incorporate the spatial boundary conditions for u and v = du/dt.
  25 commentaires
HD
HD le 23 Sep 2023
Thank you very much
Torsten
Torsten le 23 Sep 2023
Modifié(e) : Torsten le 23 Sep 2023
I'm not sure whether this averaging 1/2*(unew + uold) in Crank-Nicolson also applies to algebraic equations like the boundary conditions.
You might want to compare the results to simply setting
u_5^(n+1) = f(t^(n+1))
v_5^(n+1) = f'(t^(n+1))
thus setting the (2x2) matrix in A to [1 0;0 1], in B to [0 0 ; 0 0] and the vector b to
b = [0; 0; 0; 0; 0; ... ; f(t^(n+1)) ;f'(t^(n+1)) ]

Connectez-vous pour commenter.

Catégories

En savoir plus sur Matrix Indexing dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by