Runga-Kutta method in the matrix form

3 vues (au cours des 30 derniers jours)
Ban
Ban le 31 Août 2023
Commenté : Torsten le 31 Août 2023
Hi,
I have a set of differential eqns as: dV/dt = A*V, here, V = [V1 V2 V3] and A= [a11 a12 a13; a21 a22 a23; a31 a32 a33]. Value of A is so complex that writing down the eqns. in dV1/dt = ... dV2/dt = ... dV3/dt = ... is not convenient. So I need to solve this using Runga-Kutta method in the matrix form. I am trying the following:
V=zeros(length(t),3);
V(1,:)=[u0x, u0y, u0z];
Fx = @(t, V) A*V ;
for i=1: length(t)-1
K1 = ...
K2 = ...
K3 = ...
K4 =...
V(i+1) = V(i) + (1/6)*(K1+2*K2+2*K3+K4)*h;
end
end
However, this gives the error - Dimensions of matrices being concatenated are not consistent.
Could you please suggest how do I move ahead?

Réponses (1)

Torsten
Torsten le 31 Août 2023
Déplacé(e) : Torsten le 31 Août 2023
Supply your full code so that we can test it, not only dots for missing parts.
It should be obvious that
V(i+1) = V(i) + (1/6)*(K1+2*K2+2*K3+K4)*h;
must throw an error because your solution V is not a scalar, but a 3x1 vector.
  2 commentaires
Ban
Ban le 31 Août 2023
clear;
close all;
clc;
t0 = 0; %seconds
tf =20; %seconds
tspan=[t0 tf] ;
h=0.01;
x0=0;
y0=0;
z0=-0.5;
% Initial field velocity @t=0, x=0, z=0
u0x=exp(z0)*cos(x0-t0);
u0y=0;
u0z=exp(z0)*sin(x0-t0);
t = tspan(1):h:tspan(2);
X=zeros(length(t),3);
VX=zeros(length(t),3);
X(1,:)=[x0, y0, z0];
VX(1,:)=[u0x, u0y, u0z];
Fx = @(t, VX) [1 0 1; 1 1 0; 1 0 1]*VX;
for i=1: length(t)-1
K1 = Fx(t(i),VX(i));
K2 = Fx(t(i)+0.5*h, VX(i)+0.5*h*K1);
K3 = Fx(t(i)+0.5*h, VX(i)+0.5*h*K2);
K4 = Fx(t(i)+h, VX(i)+h*K3);
VX(i+1) = VX(i) + (1/6)*(K1+2*K2+2*K3+K4)*h;
end
vx_passive=VX;
plot(t,vx_passive,'LineWidth',2)
xlabel('$t$','FontSize',20,'FontWeight','bold', 'Interpreter','latex');
ylabel('$vx$', 'FontSize',20,'FontWeight','bold', 'Interpreter','latex');
set(gca,'FontSize',15);
hold on
Torsten
Torsten le 31 Août 2023
clear;
close all;
clc;
t0 = 0; %seconds
tf =20; %seconds
tspan=[t0 tf] ;
h=0.01;
x0=0;
y0=0;
z0=-0.5;
% Initial field velocity @t=0, x=0, z=0
u0x=exp(z0)*cos(x0-t0);
u0y=0;
u0z=exp(z0)*sin(x0-t0);
t = tspan(1):h:tspan(2);
VX=zeros(length(t),3).';
VX(:,1)=[u0x, u0y, u0z].';
Fx = @(t, VX) [1 0 1; 1 1 0; 1 0 1]*VX;
for i=1: length(t)-1
K1 = Fx(t(i),VX(:,i));
K2 = Fx(t(i)+0.5*h, VX(:,i)+0.5*h*K1);
K3 = Fx(t(i)+0.5*h, VX(:,i)+0.5*h*K2);
K4 = Fx(t(i)+h, VX(:,i)+h*K3);
VX(:,i+1) = VX(:,i) + (1/6)*(K1+2*K2+2*K3+K4)*h;
end
plot(t,VX,'LineWidth',2)
xlabel('$t$','FontSize',20,'FontWeight','bold', 'Interpreter','latex');
ylabel('$vx$', 'FontSize',20,'FontWeight','bold', 'Interpreter','latex');
set(gca,'FontSize',15);

Connectez-vous pour commenter.

Catégories

En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by