Complex solutions in ODE solver

6 vues (au cours des 30 derniers jours)
Dimitris
Dimitris le 4 Sep 2023
Commenté : Sam Chak le 10 Sep 2023
Hi guys. I am trying to solve a system of 4 ODEs to run a physics simulation. The code is:
f = @(t,y) [-0.0000017*(1-0.0000097*y(3))^12.94*(y(1)^2+y(2)^2)/sqrt((y(2)/y(1))^2+1);+9.59-0.0000017*(1-0.0000097*y(3))^12.94*y(2)*(y(1)^2+y(2)^2)/(y(1)*sqrt((y(2)/y(1))^2+1));y(1);-y(2)+y(4)/(sqrt(6371000^2+y(4)^2))*y(1);]; % y(1)=vx, y(2)=vy, y(3)=y
[t,ya] = ode45(f,[0 30],[12075 1740 0 80000]); % vx(0), vy(0), x(0), y(0)
Now, the solver works pretty well if the first two initial conditions are small. However, when I get into big numbers, like here, the solver shows complex solutions for some reason. This shouldn't be happening, as every root is in the form of sqrt(a^2+b^2), which is always positive, and every denominator is also non-zero. Is there a way to fix this?

Réponses (1)

Torsten
Torsten le 4 Sep 2023
Déplacé(e) : Torsten le 4 Sep 2023
x^12.94 can give complex values for the derivatives if x < 0.
  11 commentaires
Torsten
Torsten le 10 Sep 2023
It doesn't matter what solution method for the system of differential equations you use. All of them should yield the same solution. There is no "interpreting of the equations" - you supply the time derivatives, the solver solves for the functions for which you supplied the time derivatives.
Sam Chak
Sam Chak le 10 Sep 2023
Sometimes, studying the system may help to understand the behavior of the state trajectories.
From the first differential equation
if we assume that , and modify some constants, then two state equations can be analyzed as a nonlinear second-order differential equation.
From the stream plot, when is positive, then rapidly increases. In the actual scenario, as increases, then this term '' will become negative at one point, as shown by @Torsten.
[x, y] = meshgrid (-3:0.15:3, -3:0.15:3);
u = y;
v = - 0.17*(1 - 0.97*x).^(1).*(y.^2);
l = streamslice(x, y, u, v);
axis tight
xlabel('y_{3}'), ylabel('y_{1}')
You really need to check the equations again for errors. One thing to observe is that if I change , then the first three states show stable convergent trajectories. No more complex numbers.
f = @(t,y) [ - 0.0000017*(1 - 0.0000097*y(3))^12.94*(y(1)^2 + y(2)^2)/sqrt((y(2)/y(1))^2 + 1);
9.59 - 0.0000017*(1 - 0.0000097*y(3))^12.94*y(2)*(y(1)^2 + y(2)^2)/(y(1)*sqrt((y(2)/y(1))^2 + 1));
- y(1); % <-- change the sign here
- y(2) + y(4)/(sqrt(6371000^2 + y(4)^2))*y(1)];
tspan = [0 300];
y0 = [12075 1740 0 80000];
[t, ya] = ode45(f, tspan, y0);
plot(t, ya), grid on
xlabel('t')
legend('y_{1}', 'y_{2}', 'y_{3}', 'y_{4}')

Connectez-vous pour commenter.

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by