LU factorization with decreasing elements on the main diagonal of U
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Does
select P so that
is decreasing?
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1492132/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1492142/image.png)
If not, how can I request it?
0 commentaires
Réponses (1)
Bruno Luong
le 25 Sep 2023
Modifié(e) : Bruno Luong
le 25 Sep 2023
Obviously not
A=[1 10 9;
5 1 9;
2 8 1]
[L,U,P]=lu(A)
But you can fix the progression of abs(diag(U)) in any arbitray decrasing sequance you want, just scale appropiately L.
Here I select the sequene of U(1,1).*2.^(-(1:n-1))
% Fix it, assuming A is not singular
Ukk = abs(U(1,1));
for k=2:size(U,1)
s = Ukk/(2*abs(U(k,k)));
U(k,:) = s*U(k,:);
L(:,k) = L(:,k)/s;
Ukk = abs(U(k,k));
end
L
U
P'*L*U % close to A
In some sense the question of scaling U alone is trivial and sort of useless if you don't specify what L should be.
Note that MATLAB returns L such that diag(L) are 1.
5 commentaires
Voir également
Catégories
En savoir plus sur Operating on Diagonal Matrices dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!