LU factorization with decreasing elements on the main diagonal of U

1 vue (au cours des 30 derniers jours)
Sara
Sara le 25 Sep 2023
Commenté : Bruno Luong le 25 Sep 2023
Does select P so that is decreasing?
If not, how can I request it?

Réponses (1)

Bruno Luong
Bruno Luong le 25 Sep 2023
Modifié(e) : Bruno Luong le 25 Sep 2023
Obviously not
A=[1 10 9;
5 1 9;
2 8 1]
A = 3×3
1 10 9 5 1 9 2 8 1
[L,U,P]=lu(A)
L = 3×3
1.0000 0 0 0.2000 1.0000 0 0.4000 0.7755 1.0000
U = 3×3
5.0000 1.0000 9.0000 0 9.8000 7.2000 0 0 -8.1837
P = 3×3
0 1 0 1 0 0 0 0 1
But you can fix the progression of abs(diag(U)) in any arbitray decrasing sequance you want, just scale appropiately L.
Here I select the sequene of U(1,1).*2.^(-(1:n-1))
% Fix it, assuming A is not singular
Ukk = abs(U(1,1));
for k=2:size(U,1)
s = Ukk/(2*abs(U(k,k)));
U(k,:) = s*U(k,:);
L(:,k) = L(:,k)/s;
Ukk = abs(U(k,k));
end
L
L = 3×3
1.0000 0 0 0.2000 3.9200 0 0.4000 3.0400 6.5469
U
U = 3×3
5.0000 1.0000 9.0000 0 2.5000 1.8367 0 0 -1.2500
P'*L*U % close to A
ans = 3×3
1 10 9 5 1 9 2 8 1
In some sense the question of scaling U alone is trivial and sort of useless if you don't specify what L should be.
Note that MATLAB returns L such that diag(L) are 1.
  5 commentaires
Sara
Sara le 25 Sep 2023
Thank you, you are right.
Last question, is there any option in matlab to generate a PLU factorization such that is decreasing without having to modify a lu factorization previously calculated by matlab?

Connectez-vous pour commenter.

Catégories

En savoir plus sur Operating on Diagonal Matrices dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by