I will find an xy dataset satisfying an implicit equation.

2 vues (au cours des 30 derniers jours)
kadir can erbas
kadir can erbas le 25 Sep 2023
Modifié(e) : Bruno Luong le 26 Sep 2023
(x^2 + y^2)^3 + (15*x + 3.3*y)*(x^2 + y^2)^2 + (62.5*x^2 + 20*x*y - 8.37*y^2)*(x^2 + y^2) - 17*x^3 + 11*x^2*y + 17*x*y^2 - 11*y^3 + 432*x^2 - 24*x*y + 67*y^2 - 82*x + 400*y - 1037=0
I have the above equation and I want to obtain 200 xy points satisfying the equation. How can I find?

Réponse acceptée

Bruno Luong
Bruno Luong le 25 Sep 2023
Modifié(e) : Bruno Luong le 26 Sep 2023
f = @(x,y)(x.^2 + y.^2).^3 + (15.*x + 3.3.*y).*(x.^2 + y.^2).^2 + (62.5.*x.^2 + 20.*x.*y - 8.37.*y.^2).*(x.^2 + y.^2) - 17.*x.^3 + 11.*x.^2.*y + 17.*x.*y.^2 - 11.*y.^3 + 432.*x.^2 - 24.*x.*y + 67.*y.^2 - 82.*x + 400.*y - 1037;
n = 8;
while true
xg = linspace(-8,8,n+1);
yg = linspace(-8,8,n+1);
[Xg,Yg] = meshgrid(xg,yg);
z=f(Xg,Yg);
close all
a = contour(Xg,Yg,z,[0 0]);
if a(2,1) >= 200
break
end
n = 2*n;
end
xy = a(:,2:end);
x = xy(1,:);
y = xy(2,:);
hold on
axis equal
h1=plot(x, y, '.b');
for k=1:size(xy,2)
if ismember(x(k),xg)
y(k) = fzero(@(y) f(x(k),y), y(k));
else
x(k) = fzero(@(x) f(x,y(k)), x(k));
end
end
xy = [x(:), y(:)]
xy = 253×2
-2.4309 -6.7500 -2.5000 -6.7679 -2.6250 -6.7968 -2.7500 -6.8211 -2.8750 -6.8409 -3.0000 -6.8561 -3.1250 -6.8667 -3.2500 -6.8727 -3.3750 -6.8739 -3.5000 -6.8704
h2=plot(x, y, '.r');
legend([h1 h2],'approximation', 'accurate')
figure
plot(f(x,y)) % should be close to 0

Plus de réponses (0)

Catégories

En savoir plus sur Programming dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by