Boundary using system of pdepes
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have the following pdes systèmes wirh four membres:R_j*dC_j/dt = 1000*(1+0.0025*x)^2 - 100*(1+0.0025*x) - R_j*C_j + R_(j-1)*C_(j-1) with initial and boundary conditions. C_j(x,t=0)=0;. 100*C_j(x=0,t)-1000*C_j(x=0,t)=f_j(t) dC_j(x=L,t)=0 R_j =[10000, 14000, 50000, 500]. I try to solve it with pdepe solver but i obtained results differents to another method. I would like to know if it is because of the definition of boundary conditions in m'y pdepe code. Heure ils the pdepe code
function pdex4 m = 0; x = linspace(0,250,100); t = linspace(0,10000,100);
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); u1 = sol(:,:,1); u2 = sol(:,:,2); u3 = sol(:,:,3); u4 = sol(:,:,4);
figure surfc(x,t,u1) title('u1(x,t)') xlabel('Distance x') ylabel('Time t')
figure surfc(x,t,u2) title('u2(x,t)') xlabel('Distance x') ylabel('Time t')
figure surfc(x,t,u3) title('u3(x,t)') xlabel('Distance x') ylabel('Time t')
figure surfc(x,t,u4) title('u4(x,t)') xlabel('Distance x') ylabel('Time t')
figure plot(x,u1(10,:), x,u2(10,:), x,u3(10,:), x,u4(10,:)) title('Solution at t = 2') xlabel('Distance x') ylabel('u(x,2)') % -------------------------------------------------------------- function [c,f,s] = pdex4pde(x,t,u,DuDx) c = [10000; 14000; 50000; 500]; f = [1000*((1+0.0025*x)^2); 1000*((1+0.0025*x)^2); 1000*((1+0.0025*x)^2); 1000*((1+0.0025*x)^2)] .* DuDx ... -[100*(1+0.0025*x); 100*(1+0.0025*x); 100*(1+0.0025*x); 100*(1+0.0025*x)].* u; s = [-0.0079*10000*u(1); 0.0079*10000*u(1)-0.0000028*14000*u(2); 0.0000028*14000*u(2)-0.0000087*50000*u(3); 0.0000087*50000*u(3)-0.00043*500*u(4)]; % -------------------------------------------------------------- function u0 = pdex4ic(x); u0 = [0; 0; 0; 0]; % -------------------------------------------------------------- function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t) pl = [1.25*exp(-0.0089*t); 1.25044*(exp(-0.0010028*t)-exp(-0.0089*t)); (0.443684*1e-3*exp(-0.0089*t)+0.593431*exp(-0.0010028*t)-0.593874*exp(-0.0010087*t)); (-0.51674*1e-6*exp(-0.0089*t)+0.120853*1e-1*exp(-0.0010028*t)-0.122637*1e-1*exp(-0.0010087*t)+0.178925*1e-3*exp(-0.00143*t))]; ql = [1; 1; 1; 1]; pr = [100*(1+0.0025*100)*ur(1); 100*(1+0.0025*100)*ur(2); 100*(1+0.0025*100)*ur(3); 100*(1+0.0025*100)*ur(4)]; qr = [1; 1; 1; 1];
14 commentaires
Torsten
le 6 Oct 2023
Modifié(e) : Torsten
le 6 Oct 2023
I just noticed that the normalization by 1000*((1+0.0025*xr)^2) was not necessary because
1000*((1+0.0025*xr)^2) * dC/dx = 0
implies
dC/dx = 0
Thus your boundary conditions in the code are in correspondence with your mathematical equations if you change the 100 by xr ( = 250) in
pr = [100*(1+0.0025*100)*ur(1); 100*(1+0.0025*100)*ur(2); 100*(1+0.0025*100)*ur(3); 100*(1+0.0025*100)*ur(4)];
Réponses (0)
Voir également
Catégories
En savoir plus sur PDE Solvers dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!




