Created a aquifer system with 3 reservoirs and cant get the switch to another reservoir to work

3 vues (au cours des 30 derniers jours)
Hello,
First time using this so sorry for any mistakes. Im trying to create a aquifer system below the ground with 3 reservoirs. One reservoir is used for heat output, one is charged with heat and one doesnt do anything. After reservoir 1 is heated to 50 degrees Celcius im trying to make the system use reservoir 1 for its heat output instead of reservoir 2. Currently it does correctly start to heat the coldest reservoir, but does not start to use hottest reservoir for its heat output. This can be seen in figure 2. Could someone tell me what im doing wrong?
Kind regards,
This is my code:
% Parameters
T_inflow = 60+273.15; % °K
density_water = 1000; % kg/m^3
c_p = 4186; % J/kg/K
heat_exchanger_eff = 0.8;
rho_water = 998; % kg/m^3
% Parameters Aquifer in general
phi = 0.3; % Porosity
k = 1e-12; % Permeability (m^2)
k_soil = 0.001; % Thermal Conductivity of Soil (W/(m*K))
T_soil= 5 + 273.15; % °K
% Parameters Aquifer 1
T_initial_1 = 10+273.15; % °K
L1 = 100; % Length (m)
W1 = 100; % Width (m)
H1 = 10; % Height (m)
V_max_1 = L1 * W1 * H1; % Volume of the First Aquifer (m^3)
A_1 = 2*L1*W1+2*W1*H1+2*L1*H1; % Area of the First Aquifer (m^2)
m_1 = density_water * V_max_1; % Mass of First Aquifer (kg)
% Parameters Aquifer 2
T_initial_2 = 50+273.15; % °K
L2 = 500; % Length (m)
W2 = 50; % Width (m)
H2 = 10; % Height (m)
V_max_2 = L2 * W2 * H2; % Volume of the second Aquifer (m^3)
A_2 = 2*L2*W2+2*W2*H2+2*L2*H2; % Area of the second Aquifer (m^2)
m_2 = density_water * V_max_2; % Mass of second Aquifer (kg)
% Parameters Aquifer 3
T_initial_3 = 30+273.15; % °K
L3 = 300; % Length (m)
W3 = 100; % Width (m)
H3 = 8; % Height (m)
V_max_3 = L3 * W3 * H3; % Volume of the second Aquifer (m^3)
A_3 = 2*L3*W3+2*W3*H3+2*L3*H3; % Area of the second Aquifer (m^2)
m_3 = density_water * V_max_3; % Mass of second Aquifer (kg)
%% Daily Simulation
% Parameters for flow rate
inflow_start_time = 8; % h
inflow_end_time = 16; % h
outflow_start_time1 = 0; % h
outflow_end_time1 = 8; % h
outflow_start_time2 = 16; % h
outflow_end_time2 = 24; % h
peak_flow_rate = 200; % kg/s (this is the maximum, or peak, flow rate)
outflow_rate = 40; % kg/s (this is the maximum, or peak, flow rate)
mass_flow_in_rate = @(t) peak_flow_rate * max(0, sin(pi * ((t/3600) - inflow_start_time) / (inflow_end_time - inflow_start_time))).* ((t/3600) >= inflow_start_time & (t/3600) <= inflow_end_time);
mass_flow_out_rate = @(t) outflow_rate * (((t/3600) >= outflow_start_time1 & (t/3600) <= outflow_end_time1) | ((t/3600) >= outflow_start_time2 & (t/3600) <= outflow_end_time2));
% Convert times from hours to seconds
inflow_start_time = inflow_start_time * 60 * 60;
inflow_end_time = inflow_end_time * 60 * 60;
outflow_start_time1 = outflow_start_time1 * 60 * 60;
outflow_end_time1 = outflow_end_time1 * 60 * 60;
outflow_start_time2 = outflow_start_time2 * 60 * 60;
outflow_end_time2 = outflow_end_time2 * 60 * 60;
% Determine the initial reservoir based on the coldest temperature
[~, initial_reservoir] = min([T_initial_1, T_initial_2, T_initial_3]);
[~, initial_draining_reservoir] = max([T_initial_1, T_initial_2, T_initial_3]);
initial_conditions = [T_initial_1; T_initial_2; T_initial_3; initial_reservoir; initial_draining_reservoir];
% Time span
tspan = 0:60:24*3600; % for a 24-hour simulation, with outputs every minute
% Run ode45
[t, Y] = ode45(@(t, y) ates_ode_function(t, y, density_water, c_p, V_max_1, V_max_2, V_max_3, A_1, A_2, A_3, T_soil, T_inflow, k_soil, mass_flow_in_rate, mass_flow_out_rate, L1, W1, H1, L2, W2, H2, L3, W3, H3, m_1, m_2, m_3, heat_exchanger_eff), tspan, initial_conditions);
% Extract state variables
T1 = Y(:,1) - 273.15;
T2 = Y(:,2) - 273.15;
T3 = Y(:,3) - 273.15;
Q_in = arrayfun(mass_flow_in_rate, t);
Q_out = arrayfun(mass_flow_out_rate, t);
% Create the plot
figure(1);
subplot(2,1,1);
plot(t/3600, T1, 'r', 'LineWidth', 2); % Plot temperature in reservoir 1
hold on;
plot(t/3600, T2, 'b', 'LineWidth', 2); % Plot temperature in reservoir 2
plot(t/3600, T3, 'y', 'LineWidth', 2); % Plot temperature in reservoir 3
xlabel('Time (hours)');
ylabel('Temperature (°C)');
legend('T in Reservoir 1', 'T in Reservoir 2');
title('Temperature vs Time');
hold off;
subplot(2,1,2);
plot(t/3600, Q_in, 'r', 'LineWidth', 2);
hold on;
plot(t/3600, Q_out, 'b', 'LineWidth', 2);
xlabel('Time (hours)');
ylabel('Mass Flow Rate (kg/s)');
legend('Inflow Rate', 'Outflow Rate');
%% Weekly simulation
% Initialize storage for the entire week's data
t_week = [];
Y_week = [];
tspan_single_day = 0:60:24*3600; % for a 24-hour simulation, with outputs every minute
for day = 1:100 % Loop over each day of the week
% Run ode45 for a single day
[t, Y] = ode45(@(t, y) ates_ode_function(t, y, density_water, c_p, V_max_1, V_max_2, V_max_3, A_1, A_2, A_3, T_soil, T_inflow, k_soil, mass_flow_in_rate, mass_flow_out_rate, L1, W1, H1, L2, W2, H2, L3, W3, H3, m_1, m_2, m_3, heat_exchanger_eff), tspan, initial_conditions);
% Store this day's data
t_week = [t_week; t + (day-1)*24*3600]; % Adjust time for the week
Y_week = [Y_week; Y];
% Use the final state as the initial condition for the next day
initial_conditions = Y(end, :);
end
% Extract state variables from the weekly data
T1_week = Y_week(:,1) - 273.15;
T2_week = Y_week(:,2) - 273.15;
T3_week = Y_week(:,3) - 273.15;
% Calculate flow rates for plotting using the weekly data
Q_in_week = arrayfun(@(t) mass_flow_in_rate(mod(t, 24*3600)), t_week);
Q_out_week = arrayfun(@(t) mass_flow_out_rate(mod(t, 24*3600)), t_week);
% Create the weekly plot
figure(2); % Create a new figure for the weekly plot
subplot(2,1,1);
plot(t_week/(3600*24), T1_week, 'r', 'LineWidth', 2); % Plot temperature in reservoir 1
hold on;
plot(t_week/(3600*24), T2_week, 'b', 'LineWidth', 2); % Plot temperature in reservoir 2
plot(t_week/(3600*24), T3_week, 'y', 'LineWidth', 2); % Plot temperature in reservoir 2
xlabel('Time (days)');
ylabel('Temperature (°C)');
legend('T in Reservoir 1', 'T in Reservoir 2', 'T in Reservoir 3');
title('Weekly Temperature vs Time');
hold off;
subplot(2,1,2);
plot(t_week/(3600*24), Q_in_week, 'r', 'LineWidth', 2);
hold on;
plot(t_week/(3600*24), Q_out_week, 'b', 'LineWidth', 2);
xlabel('Time (days)');
ylabel('Mass Flow Rate (kg/s)');
legend('Weekly Inflow Rate', 'Weekly Outflow Rate');
%% Functions
function dydt = ates_ode_function(t, y, rho_water, c_p, V1, V2, V3, A1, A2, A3, T_soil, T_inflow, k_soil, mass_flow_in_rate, mass_flow_out_rate, L1, W1, H1, L2, W2, H2, L3, W3, H3, m_1, m_2, m_3, heat_exchanger_eff)
T1 = y(1);
T2 = y(2);
T3 = y(3);
current_reservoir = round(y(4)); % The current reservoir being heated
draining_reservoir = round(y(5));
% Set idx_in to current_reservoir initially
idx_in = current_reservoir;
idx_out = draining_reservoir;
if y(current_reservoir) >= (50+273.15)
[sorted_temps, sorted_idx] = sort([T1, T2, T3]);
% Modification: Update the reservoir being drained to the current reservoir if it reaches 50°C.
draining_reservoir = current_reservoir;
% Find the next coldest reservoir that hasn't reached 50°C yet.
idx_in = sorted_idx(1); % Default to the coldest
for i = 1:3
if sorted_temps(i) < (50+273.15)
idx_in = sorted_idx(i);
break;
end
end
% If the current reservoir is below 50°C, continue heating it.
if y(current_reservoir) < (50+273.15)
current_reservoir = idx_in;
end
end
idx_out = draining_reservoir; % Use the draining_reservoir to determine which one to drain
Q_in = zeros(1,3);
Q_out = zeros(1,3);
Q_in(current_reservoir) = mass_flow_in_rate(t);
Q_out(idx_out) = mass_flow_out_rate(t);
% Update flow rates based on the switching logic
switch idx_out
case 1
Q_out1 = mass_flow_out_rate(t);
Q_out2 = 0;
Q_out3 = 0;
case 2
Q_out1 = 0;
Q_out2 = mass_flow_out_rate(t);
Q_out3 = 0;
case 3
Q_out1 = 0;
Q_out2 = 0;
Q_out3 = mass_flow_out_rate(t);
end
switch idx_in
case 1
Q_in1 = mass_flow_in_rate(t);
Q_in2 = 0;
Q_in3 = 0;
case 2
Q_in1 = 0;
Q_in2 = mass_flow_in_rate(t);
Q_in3 = 0;
case 3
Q_in1 = 0;
Q_in2 = 0;
Q_in3 = mass_flow_in_rate(t);
end
% Heat loss
heat_loss1_top = k_soil * L1 * W1 * (T1 - T_soil);
heat_loss1_bottom = k_soil * L1 * W1 * (T1 - T_soil);
heat_loss1_sides = k_soil * 2 * (L1 + W1) * H1 * (T1 - T_soil);
heat_loss1 = heat_loss1_top + heat_loss1_bottom + heat_loss1_sides;
heat_loss2_top = k_soil * L2 * W2 * (T2 - T_soil);
heat_loss2_bottom = k_soil * L2 * W2 * (T2 - T_soil);
heat_loss2_sides = k_soil * 2 * (L2 + W2) * H2 * (T2 - T_soil);
heat_loss2 = heat_loss2_top + heat_loss2_bottom + heat_loss2_sides;
heat_loss3_top = k_soil * L3 * W3 * (T3 - T_soil);
heat_loss3_bottom = k_soil * L3 * W3 * (T3 - T_soil);
heat_loss3_sides = k_soil * 2 * (L3 + W3) * H3 * (T3 - T_soil);
heat_loss3 = heat_loss3_top + heat_loss3_bottom + heat_loss3_sides;
% ODEs for temperature
dT1dt = (Q_in1 * c_p * heat_exchanger_eff * (T_inflow - T1) + Q_out1 * c_p * heat_exchanger_eff * (T_soil - T1) - heat_loss1) / (m_1 * c_p);
dT2dt = (Q_in2 * c_p * heat_exchanger_eff * (T_inflow - T2) + Q_out2 * c_p * heat_exchanger_eff * (T_soil - T2) - heat_loss2) / (m_2 * c_p);
dT3dt = (Q_in3 * c_p * heat_exchanger_eff * (T_inflow - T3) + Q_out3 * c_p * heat_exchanger_eff * (T_soil - T3) - heat_loss3) / (m_3 * c_p);
dydt = [dT1dt; dT2dt; dT3dt; 0; 0];
end
%% Logic system
% Initially, pick the coldest reservoir to heat and the hottest one to extract heat.
% Continue heating that reservoir until it reaches 50°C and draining the hottest one.
% Once it reaches 50°C, switch to the next coldest reservoir that hasn't reached 50°C yet.
% Switch to the hottest reservoir for the output instead of the previous one.
% If all reservoirs are above 50°C, continue heating the least hot reservoir.

Réponses (1)

SOUMNATH PAUL
SOUMNATH PAUL le 31 Déc 2023
Hi,
I understand you are facing issues with the aquifer system not using the hottest reservoir for heat output, In my opinion we should try to adjust the logic within "ates_ode_function" that determines which reservoir is currently being drained. The code you provided already includes a mechanism for choosing the reservoir to be heated, but it seems like the logic for choosing the draining reservoir is not being updated correctly.
Here I have tried to revise the code:
% Parameters
T_inflow = 60+273.15; % °K
density_water = 1000; % kg/m^3
c_p = 4186; % J/kg/K
heat_exchanger_eff = 0.8;
rho_water = 998; % kg/m^3
% Parameters Aquifer in general
phi = 0.3; % Porosity
k = 1e-12; % Permeability (m^2)
k_soil = 0.001; % Thermal Conductivity of Soil (W/(m*K))
T_soil= 5 + 273.15; % °K
% Parameters Aquifer 1
T_initial_1 = 10+273.15; % °K
L1 = 100; % Length (m)
W1 = 100; % Width (m)
H1 = 10; % Height (m)
V_max_1 = L1 * W1 * H1; % Volume of the First Aquifer (m^3)
A_1 = 2*L1*W1+2*W1*H1+2*L1*H1; % Area of the First Aquifer (m^2)
m_1 = density_water * V_max_1; % Mass of First Aquifer (kg)
% Parameters Aquifer 2
T_initial_2 = 50+273.15; % °K
L2 = 500; % Length (m)
W2 = 50; % Width (m)
H2 = 10; % Height (m)
V_max_2 = L2 * W2 * H2; % Volume of the second Aquifer (m^3)
A_2 = 2*L2*W2+2*W2*H2+2*L2*H2; % Area of the second Aquifer (m^2)
m_2 = density_water * V_max_2; % Mass of second Aquifer (kg)
% Parameters Aquifer 3
T_initial_3 = 30+273.15; % °K
L3 = 300; % Length (m)
W3 = 100; % Width (m)
H3 = 8; % Height (m)
V_max_3 = L3 * W3 * H3; % Volume of the second Aquifer (m^3)
A_3 = 2*L3*W3+2*W3*H3+2*L3*H3; % Area of the second Aquifer (m^2)
m_3 = density_water * V_max_3; % Mass of second Aquifer (kg)
%% Daily Simulation
% Parameters for flow rate
inflow_start_time = 8; % h
inflow_end_time = 16; % h
outflow_start_time1 = 0; % h
outflow_end_time1 = 8; % h
outflow_start_time2 = 16; % h
outflow_end_time2 = 24; % h
peak_flow_rate = 200; % kg/s (this is the maximum, or peak, flow rate)
outflow_rate = 40; % kg/s (this is the maximum, or peak, flow rate)
mass_flow_in_rate = @(t) peak_flow_rate * max(0, sin(pi * ((t/3600) - inflow_start_time) / (inflow_end_time - inflow_start_time))).* ((t/3600) >= inflow_start_time & (t/3600) <= inflow_end_time);
mass_flow_out_rate = @(t) outflow_rate * (((t/3600) >= outflow_start_time1 & (t/3600) <= outflow_end_time1) | ((t/3600) >= outflow_start_time2 & (t/3600) <= outflow_end_time2));
% Convert times from hours to seconds
inflow_start_time = inflow_start_time * 60 * 60;
inflow_end_time = inflow_end_time * 60 * 60;
outflow_start_time1 = outflow_start_time1 * 60 * 60;
outflow_end_time1 = outflow_end_time1 * 60 * 60;
outflow_start_time2 = outflow_start_time2 * 60 * 60;
outflow_end_time2 = outflow_end_time2 * 60 * 60;
% Determine the initial reservoir based on the coldest temperature
[~, initial_reservoir] = min([T_initial_1, T_initial_2, T_initial_3]);
[~, initial_draining_reservoir] = max([T_initial_1, T_initial_2, T_initial_3]);
initial_conditions = [T_initial_1; T_initial_2; T_initial_3; initial_reservoir; initial_draining_reservoir];
% Time span
tspan = 0:60:24*3600; % for a 24-hour simulation, with outputs every minute
% Run ode45
[t, Y] = ode45(@(t, y) ates_ode_function(t, y, density_water, c_p, V_max_1, V_max_2, V_max_3, A_1, A_2, A_3, T_soil, T_inflow, k_soil, mass_flow_in_rate, mass_flow_out_rate, L1, W1, H1, L2, W2, H2, L3, W3, H3, m_1, m_2, m_3, heat_exchanger_eff), tspan, initial_conditions);
% Extract state variables
T1 = Y(:,1) - 273.15;
T2 = Y(:,2) - 273.15;
T3 = Y(:,3) - 273.15;
Q_in = arrayfun(mass_flow_in_rate, t);
Q_out = arrayfun(mass_flow_out_rate, t);
% Create the plot
figure(1);
subplot(2,1,1);
plot(t/3600, T1, 'r', 'LineWidth', 2); % Plot temperature in reservoir 1
hold on;
plot(t/3600, T2, 'b', 'LineWidth', 2); % Plot temperature in reservoir 2
plot(t/3600, T3, 'y', 'LineWidth', 2); % Plot temperature in reservoir 3
xlabel('Time (hours)');
ylabel('Temperature (°C)');
legend('T in Reservoir 1', 'T in Reservoir 2');
title('Temperature vs Time');
hold off;
subplot(2,1,2);
plot(t/3600, Q_in, 'r', 'LineWidth', 2);
hold on;
plot(t/3600, Q_out, 'b', 'LineWidth', 2);
xlabel('Time (hours)');
ylabel('Mass Flow Rate (kg/s)');
legend('Inflow Rate', 'Outflow Rate');
%% Weekly simulation
% Initialize storage for the entire week's data
t_week = [];
Y_week = [];
tspan_single_day = 0:60:24*3600; % for a 24-hour simulation, with outputs every minute
for day = 1:100 % Loop over each day of the week
% Run ode45 for a single day
[t, Y] = ode45(@(t, y) ates_ode_function(t, y, density_water, c_p, V_max_1, V_max_2, V_max_3, A_1, A_2, A_3, T_soil, T_inflow, k_soil, mass_flow_in_rate, mass_flow_out_rate, L1, W1, H1, L2, W2, H2, L3, W3, H3, m_1, m_2, m_3, heat_exchanger_eff), tspan, initial_conditions);
% Store this day's data
t_week = [t_week; t + (day-1)*24*3600]; % Adjust time for the week
Y_week = [Y_week; Y];
% Use the final state as the initial condition for the next day
initial_conditions = Y(end, :);
end
% Extract state variables from the weekly data
T1_week = Y_week(:,1) - 273.15;
T2_week = Y_week(:,2) - 273.15;
T3_week = Y_week(:,3) - 273.15;
% Calculate flow rates for plotting using the weekly data
Q_in_week = arrayfun(@(t) mass_flow_in_rate(mod(t, 24*3600)), t_week);
Q_out_week = arrayfun(@(t) mass_flow_out_rate(mod(t, 24*3600)), t_week);
% Create the weekly plot
figure(2); % Create a new figure for the weekly plot
subplot(2,1,1);
plot(t_week/(3600*24), T1_week, 'r', 'LineWidth', 2); % Plot temperature in reservoir 1
hold on;
plot(t_week/(3600*24), T2_week, 'b', 'LineWidth', 2); % Plot temperature in reservoir 2
plot(t_week/(3600*24), T3_week, 'y', 'LineWidth', 2); % Plot temperature in reservoir 2
xlabel('Time (days)');
ylabel('Temperature (°C)');
legend('T in Reservoir 1', 'T in Reservoir 2', 'T in Reservoir 3');
title('Weekly Temperature vs Time');
hold off;
subplot(2,1,2);
plot(t_week/(3600*24), Q_in_week, 'r', 'LineWidth', 2);
hold on;
plot(t_week/(3600*24), Q_out_week, 'b', 'LineWidth', 2);
xlabel('Time (days)');
ylabel('Mass Flow Rate (kg/s)');
legend('Weekly Inflow Rate', 'Weekly Outflow Rate');
%% Functions
function dydt = ates_ode_function(t, y, rho_water, c_p, V1, V2, V3, A1, A2, A3, T_soil, T_inflow, k_soil, mass_flow_in_rate, mass_flow_out_rate, L1, W1, H1, L2, W2, H2, L3, W3, H3, m_1, m_2, m_3, heat_exchanger_eff)
T1 = y(1);
T2 = y(2);
T3 = y(3);
current_reservoir = round(y(4)); % The current reservoir being heated
draining_reservoir = round(y(5)); % The current reservoir being drained
% Check if any reservoir has reached the target temperature of 50°C
% If so, update the draining reservoir to be the one that has reached the target temperature
if T1 >= (50+273.15)
draining_reservoir = 1;
end
if T2 >= (50+273.15)
draining_reservoir = 2;
end
if T3 >= (50+273.15)
draining_reservoir = 3;
end
% Determine the next reservoir to be heated based on the coldest temperature
[~, idx_in] = min([T1, T2, T3]);
% Set the current_reservoir to the coldest one if it hasn't reached 50°C yet
if y(current_reservoir) < (50+273.15)
current_reservoir = idx_in;
end
idx_out = draining_reservoir; % Use the draining_reservoir to determine which one to drain
Q_in = zeros(1,3);
Q_out = zeros(1,3);
Q_in(current_reservoir) = mass_flow_in_rate(t);
Q_out(idx_out) = mass_flow_out_rate(t);
% Update flow rates based on the switching logic
switch idx_out
case 1
Q_out1 = mass_flow_out_rate(t);
Q_out2 = 0;
Q_out3 = 0;
case 2
Q_out1 = 0;
Q_out2 = mass_flow_out_rate(t);
Q_out3 = 0;
case 3
Q_out1 = 0;
Q_out2 = 0;
Q_out3 = mass_flow_out_rate(t);
end
switch idx_in
case 1
Q_in1 = mass_flow_in_rate(t);
Q_in2 = 0;
Q_in3 = 0;
case 2
Q_in1 = 0;
Q_in2 = mass_flow_in_rate(t);
Q_in3 = 0;
case 3
Q_in1 = 0;
Q_in2 = 0;
Q_in3 = mass_flow_in_rate(t);
end
% Heat loss
heat_loss1_top = k_soil * L1 * W1 * (T1 - T_soil);
heat_loss1_bottom = k_soil * L1 * W1 * (T1 - T_soil);
heat_loss1_sides = k_soil * 2 * (L1 + W1) * H1 * (T1 - T_soil);
heat_loss1 = heat_loss1_top + heat_loss1_bottom + heat_loss1_sides;
heat_loss2_top = k_soil * L2 * W2 * (T2 - T_soil);
heat_loss2_bottom = k_soil * L2 * W2 * (T2 - T_soil);
heat_loss2_sides = k_soil * 2 * (L2 + W2) * H2 * (T2 - T_soil);
heat_loss2 = heat_loss2_top + heat_loss2_bottom + heat_loss2_sides;
heat_loss3_top = k_soil * L3 * W3 * (T3 - T_soil);
heat_loss3_bottom = k_soil * L3 * W3 * (T3 - T_soil);
heat_loss3_sides = k_soil * 2 * (L3 + W3) * H3 * (T3 - T_soil);
heat_loss3 = heat_loss3_top + heat_loss3_bottom + heat_loss3_sides;
% ODEs for temperature
dT1dt = (Q_in1 * c_p * heat_exchanger_eff * (T_inflow - T1) + Q_out1 * c_p * heat_exchanger_eff * (T_soil - T1) - heat_loss1) / (m_1 * c_p);
dT2dt = (Q_in2 * c_p * heat_exchanger_eff * (T_inflow - T2) + Q_out2 * c_p * heat_exchanger_eff * (T_soil - T2) - heat_loss2) / (m_2 * c_p);
dT3dt = (Q_in3 * c_p * heat_exchanger_eff * (T_inflow - T3) + Q_out3 * c_p * heat_exchanger_eff * (T_soil - T3) - heat_loss3) / (m_3 * c_p);
dydt = [dT1dt; dT2dt; dT3dt; 0; 0];
end
Hope it helps!
Regards,
Soumnath

Catégories

En savoir plus sur Thermal Liquid Library dans Help Center et File Exchange

Tags

Produits


Version

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by