how to get PointNet network (no pointnet++) Layers?

3 vues (au cours des 30 derniers jours)
mohammad
mohammad le 10 Oct 2023
Modifié(e) : Venu le 27 Déc 2023
Hi everybody
I train pointnet network in this matlab example:
But I can't use this network in my work.
I need a MATLAB net (series network or DAG network) to be used in "DeepLearning HDL ToolBox Support Package For Xilinx FPGA And SoC Device".
Or a version of PointNet open with "DeepNetworksDesigner".
Note: Only PointNet is required, it is not possible to use PointNetPlusPlus.

Réponses (1)

Venu
Venu le 27 Déc 2023
Modifié(e) : Venu le 27 Déc 2023
I can suggest you a series network based on https://de.mathworks.com/help/vision/ug/point-cloud-classification-using-pointnet-deep-learning.html this documentation. But this is just a simplified example and should be adjusted to match your specific PointNet architecture.
% Define the layers for the PointNet model
inputLayer = imageInputLayer([3, 1, 1], 'Name', 'input', 'Normalization', 'none');
convLayer1 = convolution2dLayer(64, 1, 'Name', 'conv1', 'Padding', 'same');
convLayer2 = convolution2dLayer(64, 1, 'Name', 'conv2', 'Padding', 'same');
maxPoolLayer = maxPooling2dLayer([3, 1], 'Stride', [2, 1], 'Name', 'maxpool');
fullyConnectedLayer1 = fullyConnectedLayer(128, 'Name', 'fc1');
fullyConnectedLayer2 = fullyConnectedLayer(10, 'Name', 'fc2');
softmaxLayer = softmaxLayer('Name', 'softmax');
classificationLayer = classificationLayer('Name', 'classoutput');
% Assemble the layers into a Layer Graph
lgraph = layerGraph([inputLayer, convLayer1, reluLayer, convLayer2, reluLayer, maxPoolLayer, fullyConnectedLayer1, reluLayer, fullyConnectedLayer2, softmaxLayer, classificationLayer]);
% Convert the Layer Graph to a Series Network
net = assembleNetwork(lgraph);

Catégories

En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by