A compact way to replace zeros with Inf in a matrix

10 vues (au cours des 30 derniers jours)
Sim
Sim le 16 Oct 2023
Modifié(e) : Sim le 23 Oct 2023
Would you be so nice to suggest me a more compact way to replace zeros with Inf in the following matrix? (maybe with just one line of code?)
% Input
A = [0 3 2 5 6;
1 1 4 3 2;
9 0 8 1 1;
5 9 8 2 0;
3 1 7 6 9];
% Replace zeros with Inf
[row,col] = ind2sub(size(A),find(A==0));
for i = 1 : length(row)
A(row(i),col(i))=Inf;
end
% Output
A
A = 5×5
Inf 3 2 5 6 1 1 4 3 2 9 Inf 8 1 1 5 9 8 2 Inf 3 1 7 6 9

Réponse acceptée

J. Alex Lee
J. Alex Lee le 16 Oct 2023
Modifié(e) : J. Alex Lee le 16 Oct 2023
You can implicitly index "linearly" for any arrays - it will do all the ind2sub and sub2ind in the background:
% Input
A = [0 3 2 5 6;
1 1 4 3 2;
9 0 8 1 1;
5 9 8 2 0;
3 1 7 6 9];
B = A;
% Replace zeros with Inf
[row,col] = ind2sub(size(A),find(A==0));
for i = 1 : 3
A(row(i),col(i))=Inf;
end
% Output
A
A = 5×5
Inf 3 2 5 6 1 1 4 3 2 9 Inf 8 1 1 5 9 8 2 Inf 3 1 7 6 9
B(B==0) = Inf
B = 5×5
Inf 3 2 5 6 1 1 4 3 2 9 Inf 8 1 1 5 9 8 2 Inf 3 1 7 6 9
isequal(A,B)
ans = logical
1

Plus de réponses (4)

Les Beckham
Les Beckham le 16 Oct 2023
Modifié(e) : Les Beckham le 16 Oct 2023
If you want to retain the non-zero elements of A and replace the zeros with Inf, then this is how I would suggest that you do that.
% Input
A = [0 3 2 5 6;
1 1 4 3 2;
9 0 8 1 1;
5 9 8 2 0;
3 1 7 6 9];
A(A==0) = Inf
A = 5×5
Inf 3 2 5 6 1 1 4 3 2 9 Inf 8 1 1 5 9 8 2 Inf 3 1 7 6 9
Note that your loop doesn't do this, it creates a matrix with Inf in the positions of the zeros in A and zero everywhere else. If that is really what you want then you could do that like this.
A = [0 3 2 5 6;
1 1 4 3 2;
9 0 8 1 1;
5 9 8 2 0;
3 1 7 6 9];
B = zeros(size(A));
B(A==0) = Inf
B = 5×5
Inf 0 0 0 0 0 0 0 0 0 0 Inf 0 0 0 0 0 0 0 Inf 0 0 0 0 0
  3 commentaires
Les Beckham
Les Beckham le 16 Oct 2023
Modifié(e) : Les Beckham le 16 Oct 2023
You are quite welcome.
If you are just getting started with Matlab, I would highly recommend that you take a couple of hours to go through the free online tutorial: Matlab Onramp
Sim
Sim le 17 Oct 2023
thanks :-)

Connectez-vous pour commenter.


Matt J
Matt J le 16 Oct 2023
Allso just for fun.
A = [0 3 2 5 6;
1 1 4 3 2;
9 0 8 1 1;
5 9 8 2 0;
3 1 7 6 9];
A=A+1./(A~=0)-1
A = 5×5
Inf 3 2 5 6 1 1 4 3 2 9 Inf 8 1 1 5 9 8 2 Inf 3 1 7 6 9
  2 commentaires
Alexander
Alexander le 16 Oct 2023
It can't be shorter. Thumbs up.
Sim
Sim le 17 Oct 2023
Thumb up! :-)

Connectez-vous pour commenter.


Walter Roberson
Walter Roberson le 23 Oct 2023
A = [0 3 2 5 6;
1 1 4 3 2;
9 0 8 1 1;
5 9 8 2 0;
3 1 7 6 9];
A(~A) = inf
A = 5×5
Inf 3 2 5 6 1 1 4 3 2 9 Inf 8 1 1 5 9 8 2 Inf 3 1 7 6 9
  2 commentaires
J. Alex Lee
J. Alex Lee le 23 Oct 2023
by the way, on huge matrices this is actually faster than testing for zero.
Sim
Sim le 23 Oct 2023
Modifié(e) : Sim le 23 Oct 2023
@Walter Roberson Wow!! Thumb up! :-)

Connectez-vous pour commenter.


Alexander
Alexander le 16 Oct 2023
Only for fun. My maybe a bit old-fashoned approach would be:
B=1./A;
B(B==Inf)=0;
C=1./B
  6 commentaires
Alexander
Alexander le 22 Oct 2023
Thanks @Stephen23 for the advice and yes, there are precision errors. But I think it depends on the problem you have to solve whether these are significant or not.
Stephen23
Stephen23 le 23 Oct 2023
"But I think it depends on the problem you have to solve whether these are significant or not."
I can't think of many problems where a more complex, slower, obfuscated approach with precision errors would be preferred over the simpler, clearer, much more robust approach using indexing. Can you give an example?

Connectez-vous pour commenter.

Catégories

En savoir plus sur Loops and Conditional Statements dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by