how to define mpc object's plant as state space ?

4 vues (au cours des 30 derniers jours)
AMAN
AMAN le 19 Oct 2023
Commenté : Sam Chak le 19 Oct 2023
how to define the mpc object's plant as state space rather than transfer function. i tried to run this code but not working.
% Define system matrices (Ad, Bd, Cd, Dd) for the quadruple tank system
Ad = [-0.0173190, 0, 0.026219, 0; 0, -0.0113455, 0, 0.017708; 0, 0, -0.026219, 0; 0, 0, 0, -0.017708];
Bd = [0.0395, 0; 0, 0.03598; 0, 0.076375; 0.06378, 0];
Cd = [1, 0, 0, 0; 0, 1, 0, 0];
Dd = [0, 0; 0, 0];
% Define prediction and control horizons
predictionHorizon = 10; % Adjust as needed
controlHorizon = 3; % Adjust as needed
% Define constraints (input and state constraints)
inputConstraints = [-10, 10; -10, 10]; % Adjust as needed
stateConstraints = [0, 40; 0, 40; 0, 40; 0, 40]; % Adjust as needed
% Define cost function weights
Q = eye(4); % State weight matrix (adjust as needed)
R = eye(2); % Input weight matrix (adjust as needed)
% Initial state
x0 = [10; 10; 10; 10]; % Adjust the initial state as needed
% MPC setup
mpcobj = mpc(Ad, Bd, Cd, Dd, 'PredictionHorizon', predictionHorizon, 'ControlHorizon', controlHorizon);

Réponse acceptée

Sam Chak
Sam Chak le 19 Oct 2023
There was an incorrect syntax issue with mpc(), but it is now fixed below:
% Define system matrices (Ad, Bd, Cd, Dd) for the quadruple tank system
Ad = [-0.0173190, 0, 0.026219, 0; 0, -0.0113455, 0, 0.017708; 0, 0, -0.026219, 0; 0, 0, 0, -0.017708];
Bd = [0.0395, 0; 0, 0.03598; 0, 0.076375; 0.06378, 0];
Cd = [1, 0, 0, 0; 0, 1, 0, 0];
Dd = [0, 0; 0, 0];
sys = ss(Ad, Bd, Cd, Dd) % <-- added this
sys = A = x1 x2 x3 x4 x1 -0.01732 0 0.02622 0 x2 0 -0.01135 0 0.01771 x3 0 0 -0.02622 0 x4 0 0 0 -0.01771 B = u1 u2 x1 0.0395 0 x2 0 0.03598 x3 0 0.07637 x4 0.06378 0 C = x1 x2 x3 x4 y1 1 0 0 0 y2 0 1 0 0 D = u1 u2 y1 0 0 y2 0 0 Continuous-time state-space model.
% Define prediction and control horizons
predictionHorizon = 10; % Adjust as needed
controlHorizon = 3; % Adjust as needed
% Define constraints (input and state constraints)
inputConstraints = [-10, 10; -10, 10]; % Adjust as needed
stateConstraints = [0, 40; 0, 40; 0, 40; 0, 40]; % Adjust as needed
% Define cost function weights
Q = eye(4); % State weight matrix (adjust as needed)
R = eye(2); % Input weight matrix (adjust as needed)
% Initial state
x0 = [10; 10; 10; 10]; % Adjust the initial state as needed
% MPC setup
ts = 0.1; % <-- added this
mpcobj = mpc(sys, ts, predictionHorizon, controlHorizon) % <-- fixed this
-->"Weights.ManipulatedVariables" is empty. Assuming default 0.00000. -->"Weights.ManipulatedVariablesRate" is empty. Assuming default 0.10000. -->"Weights.OutputVariables" is empty. Assuming default 1.00000. MPC object (created on 19-Oct-2023 17:07:26): --------------------------------------------- Sampling time: 0.1 (seconds) Prediction Horizon: 10 Control Horizon: 3 Plant Model: -------------- 2 manipulated variable(s) -->| 4 states | | |--> 2 measured output(s) 0 measured disturbance(s) -->| 2 inputs | | |--> 0 unmeasured output(s) 0 unmeasured disturbance(s) -->| 2 outputs | -------------- Disturbance and Noise Models: Output disturbance model: default (type "getoutdist(mpcobj)" for details) Measurement noise model: default (unity gain after scaling) Weights: ManipulatedVariables: [0 0] ManipulatedVariablesRate: [0.1000 0.1000] OutputVariables: [1 1] ECR: 100000 State Estimation: Default Kalman Filter (type "getEstimator(mpcobj)" for details) Unconstrained Use built-in "active-set" QP solver with MaxIterations of 120.
  2 commentaires
AMAN
AMAN le 19 Oct 2023
thank you sir
Sam Chak
Sam Chak le 19 Oct 2023
You are welcome, @AMAN.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Model Predictive Control Toolbox dans Help Center et File Exchange

Produits


Version

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by