I needed to plot Histograms (or) Loss Information for original image and after restoration of blur image

2 vues (au cours des 30 derniers jours)
%% Input Image
Ioriginal = imread('greyface.jpg');
imshow(Ioriginal)
title('Original Image')
% % Restore Motion Blur Without Noise
PSF = fspecial('motion',21,11);
Idouble = im2double(Ioriginal);
blurred = imfilter(Idouble,PSF,'conv','circular');
imshow(blurred)
title('Blurred Image')
%%Restoring blur image
wnr1 = deconvwnr(blurred,PSF);
imshow(wnr1)
title('Restored Blurred Image')
%%Restore Motion Blur and Gaussian Noise
noise_mean = 0;
noise_var = 0.0001;
blurred_noisy = imnoise(blurred,'gaussian',noise_mean,noise_var);
imshow(blurred_noisy)
title('Blurred and Noisy Image')
wnr2 = deconvwnr(blurred_noisy,PSF);
imshow(wnr2)
title('Restoration of Blurred Noisy Image (NSR = 0)')
signal_var = var(Idouble(:));
NSR = noise_var / signal_var;
wnr3 = deconvwnr(blurred_noisy,PSF,NSR);
imshow(wnr3)
title('Restoration of Blurred Noisy Image (Estimated NSR)')
  1 commentaire
Kartikeya
Kartikeya le 20 Oct 2023
I Have to get a plots or loss information based on original image vs Restoration of Blurred Noisy Image

Connectez-vous pour commenter.

Réponses (1)

Image Analyst
Image Analyst le 20 Oct 2023
Why not use imabsdiff to get the difference between the original image and the restored image and then take the histogram of that difference image?
diffImage = imabsdiff(Ioriginal, wnr1);
histogram(diffImage);
  4 commentaires
Kartikeya
Kartikeya le 21 Oct 2023
@Image Analyst Even though i am getting same error can you please change the code and send me.
DGM
DGM le 21 Oct 2023
Ioriginal = imread('cameraman.tif');
% Restore Motion Blur Without Noise
PSF = fspecial('motion',21,11);
Idouble = im2double(Ioriginal);
blurred = imfilter(Idouble,PSF,'conv','circular');
% Restoring blur image
wnr1 = deconvwnr(blurred,PSF);
% assuming the abs difference is the thing you actually want
err = imabsdiff(Idouble,wnr1);
histogram(err)
% Restore Motion Blur and Gaussian Noise
noise_mean = 0;
noise_var = 0.0001;
blurred_noisy = imnoise(blurred,'gaussian',noise_mean,noise_var);
signal_var = var(Idouble(:));
NSR = noise_var / signal_var;
wnr3 = deconvwnr(blurred_noisy,PSF,NSR);
% assuming the abs difference is the thing you actually want
err = imabsdiff(Idouble,wnr3);
histogram(err)

Connectez-vous pour commenter.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by