Integrate pressure over area, from dataset points
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Francesco Brescia
le 30 Oct 2023
Commenté : Francesco Brescia
le 2 Nov 2023
Hi, i want to compute the integral over the area of the pressure distribution p(x,y). I have vectors x and y ,say each one of size n by 1,containing the coordinates at which the pressure is known, and a vector of pressures, size n by 1, with the pressure at each coordinate. I thought i could use trapz 2 times to compute the integral first in one direction and then the other, but to do this i would need a Matrix of pressure, instead i have a vector of the same size of the coordinates x and y. I also know that the area I have is an anulus surface, as i can see from plotting using stem3(x,y,p). The coordinates are taken w.r.t the center of the anulus, in cartesian coordinates. Hope you can help me figure this out, thanks.
5 commentaires
Torsten
le 31 Oct 2023
Modifié(e) : Torsten
le 31 Oct 2023
If your suggestion was used, the density of the measurement points had to mirror the areas associated with them. But imagine data accumulating in a certain area while in another, there are almost no measurements. In this case, the weights for the datapoints in the integration couldn't be equally chosen.
Réponse acceptée
Torsten
le 30 Oct 2023
Modifié(e) : Torsten
le 30 Oct 2023
Maybe you want to get mean pressure over the face. In this case, divide "sol" by area = pi*(5^2-1^2) as done below.
x = load("x.mat")
y = load("y.mat")
p = load("p.mat")
plot(x.x1,y.y1,'o')
F = scatteredInterpolant(x.x1,y.y1,p.p);
fun = @(r,theta)F(r.*cos(theta),r.*sin(theta)).*r;
sol = integral2(fun,1,5,0,2*pi)
mean_sol = sol/(pi*(5^2-1^2))
5 commentaires
Torsten
le 1 Nov 2023
Modifié(e) : Torsten
le 1 Nov 2023
Study the example
Multiple Numerical Integrations
under
to learn about the necessary format of your function data in order to use "trapz" for a 2d integration.
If you have problems to make your data compatible with the required format for "trapz", use the "scatteredInterpolant" approach - the setup is easy and the results won't differ significantly in my opinion.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!