how can I predicate output for u data size 33 by 33 where inputs u for time steps t=10, t=15, and t=20 given as input in Convolutional Neural Network ,a sample code for it .p

1 vue (au cours des 30 derniers jours)
% Define your data and model parameters
num_samples = 1; % Replace with the actual number of samples
num_channels = 1; % Number of channels (assuming grayscale)
height = 33; % Replace with the height of your data (e.g., 33)
width = 33; % Replace with the width of your data (e.g., 33)
num_classes = 3; % Number of classes in your classification task
% Generate random input data for U at t=10, t=15, and t=20
X_train_t10 = rand(height, width, num_channels, num_samples); % Replace with your data generation
X_train_t15 = rand(height, width, num_channels, num_samples); % Replace with your data generation
X_train_t20 = rand(height, width, num_channels, num_samples); % Replace with your data generation
% Concatenate the data for different time steps
X_train = cat(4, X_train_t10, X_train_t15, X_train_t20);
% Generate random output data for U at t=25 (classification task)
y_train = randi([1, num_classes], [1, num_samples]); % Replace with your data generation
% Define category names
category_names = {'Category1', 'Category2', 'Category3'};
% Convert numeric data to categorical using category names
y_train = categorical(y_train, 1:num_classes, category_names);
% Create the 2D CNN model
model = create_cnn_model(height, width, num_channels, num_classes); % Define the function create_cnn_model
% Compile the model
model = compile_cnn_model(model, X_train, y_train); % Pass X_train and y_train as arguments
% Train the model (you can use this random data for training, but it's usually real data)
model = train_cnn_model(model, X_train, y_train);
% Make predictions
X_test = rand(height, width, num_channels, num_samples); % Replace with your data generation for testing
predictions = predict_cnn_model(model, X_test);
% Rest of your code remains the same...
% Rest of your code remains the same...
% Evaluate the model
y_test = load_test_target_values(); % Implement this function for test target values
evaluation_result = evaluate_cnn_model(model, X_test, y_test);
% Plot the actual vs. predicted data
figure;
plot(y_test, predictions, 'o');
xlabel('Actual U values at t=40');
ylabel('Predicted U values at t=40');
title('Actual vs. Predicted U values');
% Plot 2D images of input data
figure;
for i = 1:min(16, num_samples) % Plot the first 16 samples
subplot(4, 4, i);
imshow(X_train(:,:,1,i), []);
title(['Sample ', num2str(i)]);
end
sgtitle('Input Data Images');
% Plot statistical analysis plots (e.g., histograms)
figure;
subplot(1, 2, 1);
histogram(y_test, 'Normalization', 'probability', 'BinWidth', 0.1);
title('Actual U values at t=40');
xlabel('U values');
ylabel('Probability');
subplot(1, 2, 2);
histogram(predictions, 'Normalization', 'probability', 'BinWidth', 0.1);
title('Predicted U values at t=40');
xlabel('U values');
ylabel('Probability');
% Save the model if desired
save_model(model, 'u_prediction_cnn_2d.mat'); % Define the save_model function
% Define the load_and_preprocess_data function
% function X_train = load_and_preprocess_data()
% % Load and preprocess your 'X_train' data
% % Replace this with your actual data loading and preprocessing
% end
%
% % Define the load_target_values function
% function y_train = load_target_values()
% % Load or generate your target values (y_train) for training
% % Replace this with your actual code to obtain training target data
% % For example:
% % y_train = load('target_values.mat'); % Load target values from a file
% end
% Define the create_cnn_model function
function model = create_cnn_model(~, ~, ~)
model = alexnet; % You can customize this architecture
% Modify the model architecture as needed
end
% Define the compile_cnn_model function
function model = compile_cnn_model(model, X_train, y_train)
options = trainingOptions('adam', 'MaxEpochs', 10, 'MiniBatchSize', 32, 'Plots', 'training-progress');
model = trainNetwork(X_train, y_train, model.Layers, options);
end
% Define the train_cnn_model function
function model = train_cnn_model(model, ~, ~)
% Training code, if any specific function is required
end
% Define the predict_cnn_model function
function predictions = predict_cnn_model(model, X_test)
predictions = predict(model, X_test);
end
% Define the evaluate_cnn_model function
function evaluation_result = evaluate_cnn_model(~, ~, ~)
% Evaluation code, if any specific function is required
end
% Define the save_model function
function save_model(model, filename)
save(filename, 'model');
end
% Define the load_and_preprocess_test_data function
% function X_test = load_and_preprocess_test_data()
% % Load and preprocess your 'X_test' data for testing
% % Replace this with your actual data loading and preprocessing for testing
% end
%
% % Define the load_test_target_values function
% function y_test = load_test_target_values()
% % Load or generate your target values (y_test) for testing
% % Replace this with your actual code to obtain testing target data
% % For example:
% % y_test = load('test_target_values.mat'); % Load test target values from a file
% end
  4 commentaires
Walter Roberson
Walter Roberson le 7 Nov 2023
Sorry, I do not know enough about CNN to work on this.

Connectez-vous pour commenter.

Réponse acceptée

Neha
Neha le 15 Nov 2023
Hi Praveen,
I understand that you want to train a CNN model to predict the u component at t=25 based on u components at t=10, t=15, and t=20. I assume that your dataset looks like this:
Input Data:
- Sample 1:
- u component at t=10: 33x33 array
- u component at t=15: 33x33 array
- u component at t=20: 33x33 array
- Sample 2:
- u component at t=10: 33x33 array
- u component at t=15: 33x33 array
- u component at t=20: 33x33 array
...
- Sample N:
- u component at t=10: 33x33 array
- u component at t=15: 33x33 array
- u component at t=20: 33x33 array
Output Data:
- Sample 1:
- u component at t=25: 33x33 array
- Sample 2:
- u component at t=25: 33x33 array
...
- Sample N:
- u component at t=25: 33x33 array
Based on the above assumption, the input size is 33 x 33 x 3 x num_samples (3 channels for u at t=10, t=15, t=20) and the output size is 33 x 33 x 1 x num_samples (1 channel for predicting u at t=25).
After preparing the dataset, you can refer to the following documentation link for more information on training a CNN model for regression:
Since the response size is 33x33x1, you may need to define a custom layer in the end after the fully connected layer. Please refer to the following documentation link for more information on defining a custom layer:
Hope this helps!
  1 commentaire
praveen kumar
praveen kumar le 16 Nov 2023
Modifié(e) : praveen kumar le 16 Nov 2023
thanks for understanding my dought madam small clarification thet yOu mentioned sample 1:
- u component at t=10: 33x33 array
- u component at t=15: 33x33 array
- u component at t=20: 33x33 array but i consider each array as same madam so 3 samples to predict u component at t=25 : 33x33 array thanks madam if it 120 by 120 data size each then ? if possible get code madam if i have 20 such date sets each is time dependent so to predict next time dependent nedent data.and in addition,general how many such data sets required to get desired aaccuracy(CNN or RNN works?)
Thanks in advance

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Get Started with Statistics and Machine Learning Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by