Why are my plots for K values and initial conditions all the same colour even with hold on
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
% Mesh Grid in (Diamtoms(D),Zooplankton(P))-plane
[D, P] = meshgrid(-0.8:1:10, -0.8:1:10);
% Parameters
hold on
for K=1:10;
s=1;
e=1;
r=1;
H=1;
d=0.75;
% System as a 2-D function
f = @(t,X) [X(1)*(r*(1-X(1)*(1/K))-(s*X(1)/1+s*H*X(1))*X(2));
X(2)*(e*(s*X(1))/(1+s*H*X(1))-d)];
%Direction Filed
% Ddot is dD/dt and Pdot is dP/dt derivatives
Ddot = D-(1./K).*D.*D-(s*D)./((1+s.*H.*D)).*P;
Pdot = P.*((s.*D)./(1+s.*H.*D))-P.*d;
% Vector Field
figure(1)
quiver(D,P,Ddot,Pdot,'k','LineWidth',1.5)
timespan=[0 100];
% Phase Trajectories
X0=0.5*K*rand;Y0=K*rand;
[ts, Xs] = ode45(f,timespan, [X0, Y0]);
% plot of several trajectories
plot(Xs(:,1), Xs(:,2),'k', 'Linewidth', 2)
xlabel('Prey, D', 'FontSize',14)
ylabel('Predator, P', 'FontSize',14)
set(gca, 'FontSize', 16)
xlim([-0.8 10])
ylim([-0.8 10])
end
1 commentaire
Beñat Arribas
le 31 Oct 2023
The 'k' defines the color of the plots, which is equivalent to black color. Removing this will turn between the different colors set by default.
quiver(D,P,Ddot,Pdot,'k','LineWidth',1.5)
plot(Xs(:,1), Xs(:,2),'k', 'Linewidth', 2)
Réponse acceptée
Voss
le 31 Oct 2023
They are all the same color because you have specified them all to be black when you plotted them. The 'k' means black in, e.g.:
quiver(D,P,Ddot,Pdot,'k','LineWidth',1.5)
% ...
plot(Xs(:,1), Xs(:,2),'k', 'Linewidth', 2)
Removing the 'k' gives lines with different colors:
% Mesh Grid in (Diamtoms(D),Zooplankton(P))-plane
[D, P] = meshgrid(-0.8:1:10, -0.8:1:10);
% Parameters
hold on
for K=1:10;
s=1;
e=1;
r=1;
H=1;
d=0.75;
% System as a 2-D function
f = @(t,X) [X(1)*(r*(1-X(1)*(1/K))-(s*X(1)/1+s*H*X(1))*X(2));
X(2)*(e*(s*X(1))/(1+s*H*X(1))-d)];
%Direction Filed
% Ddot is dD/dt and Pdot is dP/dt derivatives
Ddot = D-(1./K).*D.*D-(s*D)./((1+s.*H.*D)).*P;
Pdot = P.*((s.*D)./(1+s.*H.*D))-P.*d;
% Vector Field
figure(1)
quiver(D,P,Ddot,Pdot, 'LineWidth',1.5)
timespan=[0 100];
% Phase Trajectories
X0=0.5*K*rand;Y0=K*rand;
[ts, Xs] = ode45(f,timespan, [X0, Y0]);
% plot of several trajectories
plot(Xs(:,1), Xs(:,2), 'Linewidth', 2)
xlabel('Prey, D', 'FontSize',14)
ylabel('Predator, P', 'FontSize',14)
set(gca, 'FontSize', 16)
xlim([-0.8 10])
ylim([-0.8 10])
end
1 commentaire
Voss
le 31 Oct 2023
Also, you can move those things that don't depend on the value of the variable K out of the for loop:
% Mesh Grid in (Diamtoms(D),Zooplankton(P))-plane
[D, P] = meshgrid(-0.8:1:10, -0.8:1:10);
% Parameters
s=1;
e=1;
r=1;
H=1;
d=0.75;
timespan=[0 100];
Pdot = P.*((s.*D)./(1+s.*H.*D))-P.*d;
figure(1)
hold on
for K=1:10;
% System as a 2-D function
f = @(t,X) [X(1)*(r*(1-X(1)*(1/K))-(s*X(1)/1+s*H*X(1))*X(2));
X(2)*(e*(s*X(1))/(1+s*H*X(1))-d)];
%Direction Filed
% Ddot is dD/dt and Pdot is dP/dt derivatives
Ddot = D-(1./K).*D.*D-(s*D)./((1+s.*H.*D)).*P;
% Vector Field
quiver(D,P,Ddot,Pdot, 'LineWidth',1.5)
% Phase Trajectories
X0=0.5*K*rand;Y0=K*rand;
[ts, Xs] = ode45(f,timespan, [X0, Y0]);
% plot of several trajectories
plot(Xs(:,1), Xs(:,2), 'Linewidth', 2)
end
xlabel('Prey, D', 'FontSize',14)
ylabel('Predator, P', 'FontSize',14)
set(gca, 'FontSize', 16)
xlim([-0.8 10])
ylim([-0.8 10])
Plus de réponses (1)
Les Beckham
le 31 Oct 2023
Because you told Matlab to make all of the lines black.
For example, the 'k' in this command means "make the lines black":
plot(Xs(:,1), Xs(:,2),'k', 'Linewidth', 2)
% Mesh Grid in (Diamtoms(D),Zooplankton(P))-plane
[D, P] = meshgrid(-0.8:1:10, -0.8:1:10);
% Parameters
% hold on
s=1;
e=1;
r=1;
H=1;
d=0.75;
for K=1:10;
% System as a 2-D function
f = @(t,X) [X(1)*(r*(1-X(1)*(1/K))-(s*X(1)/1+s*H*X(1))*X(2));
X(2)*(e*(s*X(1))/(1+s*H*X(1))-d)];
%Direction Filed
% Ddot is dD/dt and Pdot is dP/dt derivatives
Ddot = D-(1./K).*D.*D-(s*D)./((1+s.*H.*D)).*P;
Pdot = P.*((s.*D)./(1+s.*H.*D))-P.*d;
% Vector Field
figure(1)
quiver(D,P,Ddot,Pdot) % <<< removed color and linewidth specification
hold on % <<< hold on AFTER first plot command
timespan=[0 100];
% Phase Trajectories
X0=0.5*K*rand;
Y0=K*rand;
[ts, Xs] = ode45(f,timespan, [X0, Y0]);
% plot of several trajectories
plot(Xs(:,1), Xs(:,2)) % <<< removed color and linewidth specification
xlabel('Prey, D', 'FontSize',14)
ylabel('Predator, P', 'FontSize',14)
set(gca, 'FontSize', 16)
xlim([-0.8 10])
ylim([-0.8 10])
end
0 commentaires
Voir également
Catégories
En savoir plus sur 2-D and 3-D Plots dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!