Using Optimizing Nonlinear Functions to find mutiple variations

1 vue (au cours des 30 derniers jours)
Lam Ha
Lam Ha le 8 Nov 2023
Commenté : Lam Ha le 9 Nov 2023
Hi everyone, I'm having some problems when using Optimization to find some variations.
I have the equation as following:
xdata=125:2:145;
ydata=[0.002 0.003 0.009 0.025 0.053 0.089 0.104 0.09 0.07 0.041 0.017];
y=@(x)(-1/(dev*sqrt(2*pi))*exp(-1/2*((xdata-mean)/dev).^2);
with dev a.k.a deviation and mean is two fixed parameters I have to find.
I have referenced the Optimizing Nonlinear Functions and Solve a Constrained Nonlinear Problem, Solver-Based in Matlab.
This is my code.
%%%Function code
function sse = sseval(n,xdata,ydata)
mean=n(1);
dev=n(2);
sse=ydata-1/(dev*sqrt(2*pi))*exp(-1/2*((xdata-mean)/dev).^2);
end
%%%Main code
clc;
clear all;
close all;
xdata=[125 127 129 131 133 135 137 139 141 143 145];
ydata=[0.002 0.003 0.009 0.025 0.053 0.089 0.104 0.09 0.07 0.041 0.017];
%%%%Find mean and deviation value
rng default %for reproducibility
type sseval
fun = @(n)sseval(n,xdata,ydata);
x0=rand(2,1);
bestn=fminsearch(fun,x0)
The result showed the error and cannot run. Can anyone show me what is the problem with this? Thank you so much in advanced.

Réponse acceptée

Torsten
Torsten le 8 Nov 2023
xdata=[125 127 129 131 133 135 137 139 141 143 145];
ydata=[0.002 0.003 0.009 0.025 0.053 0.089 0.104 0.09 0.07 0.041 0.017];
%%%%Find mean and deviation value
fun = @(n)sseval(n,xdata,ydata);
x0=[135,1];
bestn=fminsearch(fun,x0)
bestn = 1×2
137.4512 3.8956
xsim = xdata;
ysim = 1/(bestn(2)*sqrt(2*pi))*exp(-1/2*((xsim-bestn(1))/bestn(2)).^2);
hold on
plot(xsim,ysim)
plot(xdata,ydata,'o')
hold off
%%%Function code
function sse = sseval(n,xdata,ydata)
mean=n(1);
dev=n(2);
sse=ydata-1/(dev*sqrt(2*pi))*exp(-1/2*((xdata-mean)/dev).^2);
sse = sum(sse.^2);
end

Plus de réponses (1)

Matt J
Matt J le 8 Nov 2023
Modifié(e) : Matt J le 8 Nov 2023
There are also FEX downloads that can do gauss fitting for you, e.g.,
xdata=[125 127 129 131 133 135 137 139 141 143 145];
ydata=[0.002 0.003 0.009 0.025 0.053 0.089 0.104 0.09 0.07 0.041 0.017];
p=gaussfitn(xdata',ydata',[],{0,[],[]},{0,[],[]});
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
[~,A,mu,sig2]=deal(p{:});
mu,
mu = 137.4548
dev=sqrt(sig2)
dev = 3.9507
x=linspace(min(xdata),max(xdata));
yfit=@(xx) A*exp(-1/2*((xx-mu)/dev).^2);
plot(xdata,ydata,'o',x,yfit(x))

Catégories

En savoir plus sur Nonlinear Optimization dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by