Using Optimizing Nonlinear Functions to find mutiple variations
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi everyone, I'm having some problems when using Optimization to find some variations.
I have the equation as following:
xdata=125:2:145;
ydata=[0.002 0.003 0.009 0.025 0.053 0.089 0.104 0.09 0.07 0.041 0.017];
y=@(x)(-1/(dev*sqrt(2*pi))*exp(-1/2*((xdata-mean)/dev).^2);
with dev a.k.a deviation and mean is two fixed parameters I have to find.
I have referenced the Optimizing Nonlinear Functions and Solve a Constrained Nonlinear Problem, Solver-Based in Matlab.
This is my code.
%%%Function code
function sse = sseval(n,xdata,ydata)
mean=n(1);
dev=n(2);
sse=ydata-1/(dev*sqrt(2*pi))*exp(-1/2*((xdata-mean)/dev).^2);
end
%%%Main code
clc;
clear all;
close all;
xdata=[125 127 129 131 133 135 137 139 141 143 145];
ydata=[0.002 0.003 0.009 0.025 0.053 0.089 0.104 0.09 0.07 0.041 0.017];
%%%%Find mean and deviation value
rng default %for reproducibility
type sseval
fun = @(n)sseval(n,xdata,ydata);
x0=rand(2,1);
bestn=fminsearch(fun,x0)
The result showed the error and cannot run. Can anyone show me what is the problem with this? Thank you so much in advanced.
0 commentaires
Réponse acceptée
Torsten
le 8 Nov 2023
xdata=[125 127 129 131 133 135 137 139 141 143 145];
ydata=[0.002 0.003 0.009 0.025 0.053 0.089 0.104 0.09 0.07 0.041 0.017];
%%%%Find mean and deviation value
fun = @(n)sseval(n,xdata,ydata);
x0=[135,1];
bestn=fminsearch(fun,x0)
xsim = xdata;
ysim = 1/(bestn(2)*sqrt(2*pi))*exp(-1/2*((xsim-bestn(1))/bestn(2)).^2);
hold on
plot(xsim,ysim)
plot(xdata,ydata,'o')
hold off
%%%Function code
function sse = sseval(n,xdata,ydata)
mean=n(1);
dev=n(2);
sse=ydata-1/(dev*sqrt(2*pi))*exp(-1/2*((xdata-mean)/dev).^2);
sse = sum(sse.^2);
end
Plus de réponses (1)
Matt J
le 8 Nov 2023
Modifié(e) : Matt J
le 8 Nov 2023
There are also FEX downloads that can do gauss fitting for you, e.g.,
xdata=[125 127 129 131 133 135 137 139 141 143 145];
ydata=[0.002 0.003 0.009 0.025 0.053 0.089 0.104 0.09 0.07 0.041 0.017];
p=gaussfitn(xdata',ydata',[],{0,[],[]},{0,[],[]});
[~,A,mu,sig2]=deal(p{:});
mu,
dev=sqrt(sig2)
x=linspace(min(xdata),max(xdata));
yfit=@(xx) A*exp(-1/2*((xx-mu)/dev).^2);
plot(xdata,ydata,'o',x,yfit(x))
Voir également
Catégories
En savoir plus sur Nonlinear Optimization dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!