Using LSTM for non-linear system identification
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
David Vatavu
le 12 Nov 2023
Réponse apportée : Gagan Agarwal
le 24 Nov 2023
Hello, i need some steps and information to build a neural network lstm for nonlinear system identification. I have already the data set, training set and test set. This is my code, what i need to do more?Please tell me
clear all
clc
load('twotankdata.mat');
output=y;
input=u;
%normalizarea datelor de intrare
min_input = min(input);
max_input = max(input);
x_normalized=(input-min_input)/(max_input-min_input);
min_output=min(output);
max_output=max(output);
y_normalized=(output-min_output)/(max_output-min_output);
x_train=x_normalized(1:2250,:);
x_test=x_normalized(2251:3000,:);
y_train=y_normalized(1:2250,:);
y_test=y_normalized(2251:3000,:);
%Define LSTM Network Arhitecture
model=lstmLayer(100,'OutputMode','sequence','StateActivationFunction','tanh','GateActivationFunction','sigmoid');
numFeatures=size(x_train',2);
inputSize=1;
numHiddenUnits=70;
numClasses=1;
layer=[...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits,'OutputMode','last')
fullyConnectedLayer(numClasses)
%softmaxLayer
regressionLayer
];
options=trainingOptions('adam',...
'ExecutionEnvironment','cpu',...
'MaxEpochs',250,...
'MiniBatchSize',27,...
'GradientThreshold',1,...
'Verbose',false,...
'Plots','training-progress');
net=trainNetwork(x_train',y_train',layer,options);
i have this error: Invalid training data. The output size (1) of the last layer does not match the response size (2250).
2 commentaires
Réponse acceptée
Gagan Agarwal
le 24 Nov 2023
Hi David,
I understand that you are encountering an error that the output size of last layer does not match with the response size.
To address this issue, it is important to ensure that the output size of the last layer matches the size of your training output data. Please refer to the following approaches to resolve the issue:
- Review the dimensions of your training data and the expected output size. There might be inconsistency in dimensions between training data and the expected output size
- Verify the architecture of your neural network and the dimensions of each layer, especially the last layer. Ensure that the output size of the last layer matches the expected response size.
I hope it helps!
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Sequence and Numeric Feature Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!