Matlab Coder for DeepLearning
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
The DL layers supported by Matlab Coder have been listed and updated contineously in the link below:
Many layers have been supported by Generc C/C++ nowadays.
My question is:
When is it possible for the Matlab Coder to support SequenceFolding Layer & SequenceUnfolding Layer with Generic C/C++? Is there a plan for these two layers? Or they will just be skipped?
2 commentaires
Sergio Matiz Romero
le 21 Nov 2023
Modifié(e) : Sergio Matiz Romero
le 21 Nov 2023
Thank you for reaching out. Does your application require that you insert the folding and unfolding layers explicitly for a particular reason? Notice that you can completely avoid the insertion of these layers if you use dlnetwork instead of DAG networks. For instance, you can construct a convolution + LSTM network as:
layers = [
sequenceInputLayer([8 8 3], 'name','seq')
convolution2dLayer(3,3, 'Name', 'convolution1','Padding','same')
lstmLayer(20,'name','lstm')
fullyConnectedLayer(10,'Name','fc')
];
dlnet = dlnetwork(layers);
and the above network does support generic C/C++ code generation. On the other hand, when using DAG networks, you would need to insert sequence folding/unfolding layers (around convolution), which are not currently supported for generic C/C++ code generation.
Can the network you are working with be expressed as a dlnetwork to avoid the use of the unsupported layers? If so, I would recommend using a dlnetwork since it will soon become the recommended workflow. Otherwise, please let me know more about your use case to be able to further assist you
Réponses (0)
Voir également
Catégories
En savoir plus sur Image Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!