Solving a quadratic optimization problem subjected to linear constraints
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I'm trying to recreate the code behind this picture. I have a function
where
. I need to solve the following quadratic optimization problem subject to linear constraint:
subject to: 

the input data are:
= [0, 0.25, 0.5, 1, 1.2, 1.8, 2];
= [2, 0.8, 0.5, 0.1, 1, 0.5, 1];
= [0, 0.25, 0.5, 1, 1.2, 1.8, 2]; And I need the following result: 

I tried to use the function fmincon but it gives me always the same value for lambda. Can you help me find the error or explain to me what kind of function I need to use instead?
clc;
clear;
close all;
x_i = [0, 0.25, 0.5, 1, 1.2, 1.8, 2];
f_i = [2, 0.8, 0.5, 0.1, 1, 0.5, 1];
ottimizzazione_quadratica(x_i,f_i);
function risultato = ottimizzazione_quadratica(x_i, f_i)
x0 = zeros(size(x_i));
A = [];
b = [];
Aeq = [];
beq = [];
lb = zeros(size(x_i)); % lambda_i >= 0
ub = [];
lambda_ottimale = fmincon(@(lambda) funzione_obiettivo(lambda, x_i, f_i), x0, A, b, Aeq, beq, lb, ub);
risultato = F(lambda_ottimale, x_i);
% Plot F(x) and points (xi, fi)
x_vals = linspace(min(x_i), max(x_i), 1000);
F_vals = arrayfun(@(x) F(lambda_ottimale, x), x_vals);
figure;
plot(x_i, f_i, 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'r'); % Punti dati
hold on;
plot(x_vals, F_vals, 'b-', 'LineWidth', 2); % Funzione F(x)
xlabel('x');
ylabel('F(x)');
grid on;
hold off;
end
function risultato = funzione_obiettivo(lambda, x_i, f_i)
risultato = norm(F(lambda, x_i) - f_i)^2;
end
% F(x)
function risultato = F(lambda, x_i)
risultato = sum(lambda .* phi(x_i));
end
% phi
function risultato = phi(x_i)
% max(0, 1 - norm(x - xi)^4)*(4*norm(x-xi)+1)
risultato = arrayfun(@(x) max(0, 1 - norm(x - x_i)^4)*(4*norm(x - x_i) + 1), x_i);
end
0 commentaires
Réponse acceptée
Matt J
le 28 Nov 2023
Modifié(e) : Matt J
le 28 Nov 2023
xi=[0, 0.25, 0.5, 1, 1.2, 1.8, 2]';
fi= [2, 0.8, 0.5, 0.1, 1, 0.5, 1]';
phi=@(r) max(0, 1 - r).^4.*(4*r + 1);
C=phi(abs(xi-xi'));
[lambda,fval]=lsqnonneg(C,fi)
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Quadratic Programming and Cone Programming dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
