how can I smooth the graph for a set of varying data points??
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Shahriar Shafin
le 30 Nov 2023
Commenté : Mathieu NOE
le 30 Nov 2023
How can I make the graph more smooth and equlibriate perfectly with the upper graph like the right one in MATLAB??
data sets are given below :
0 commentaires
Réponse acceptée
Mathieu NOE
le 30 Nov 2023
hello
maybe this ? (I optd for a exponential fit of your lattice data)
data1 = readmatrix('lattice vs time plot.xlsx');
x1 = data1(:,1);
y1 = data1(:,2);
data2 = readmatrix('electron vs time plot.xlsx');
x2 = data2(:,1);
y2 = data2(:,2);
[k, yInf, y0, yFit] = fitExponential(x1, y1);
figure(1);
plot(x1,y1,'g',x2,y2,'r','linewidth',2);
hold on
plot(x1,yFit,'k','linewidth',5);
hold off
% apply corrective factor on fitted curve to math the other curve asymptote
y2_asymp = mean(y2(round(end/2):end));
correction_factor = y2_asymp/yFit(end);
yFit = yFit*correction_factor;
figure(2);
plot(x1,y1,'g',x2,y2,'r','linewidth',2);
hold on
plot(x1,yFit,'k','linewidth',5);
hold off
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [k, yInf, y0, yFit] = fitExponential(x, y)
% FITEXPONENTIAL fits a time series to a single exponential curve.
% [k, yInf, y0] = fitExponential(x, y)
%
% The fitted curve reads: yFit = yInf + (y0-yInf) * exp(-k*(x-x0)).
% Here yInf is the fitted steady state value, y0 is the fitted initial
% value, and k is the fitted rate constant for the decay. Least mean square
% fit is used in the estimation of the parameters.
%
% Outputs:
% * k: Relaxation rate
% * yInf: Final steady state
% * y0: Initial state
% * yFit: Fitted time series
%
% improve accuracy by subtracting large baseline
yBase = y(1);
y = y - y(1);
fh_objective = @(param) norm(param(2)+(param(3)-param(2))*exp(-param(1)*(x-x(1))) - y, 2);
initGuess(1) = -(y(2)-y(1))/(x(2)-x(1))/(y(1)-y(end));
initGuess(2) = y(end);
initGuess(3) = y(1);
param = fminsearch(fh_objective,initGuess);
k = param(1);
yInf = param(2) + yBase;
y0 = param(3) + yBase;
yFit = yInf + (y0-yInf) * exp(-k*(x-x(1)));
end
4 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Interpolation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!