Compute a function that has Double summation

17 vues (au cours des 30 derniers jours)
mohammed shapique
mohammed shapique le 4 Déc 2023
I want to compute . I have tried with code
Q1 = @(n) (1/alpha_3b)^(n + 2) * (1/alpha_1)^2 * ...
(sum((alpha_3b/alpha_1).^(1:10000)) * sum((alpha_3b/alpha_3).^(1:n+1)) - ...
sum(sum((alpha_3b/alpha_3).^i .* (alpha_3b/alpha_1).^(1:n+1-i))));
but am getting error.
The other values are
lambda = 0.7;
mu_1=1.2;
mu_2=1;
mu = mu_1 + mu_2;
gamma_1 = 0.2;
gamma_2 = 0.3;
theta_1 = 0.2;
theta_2 = 0.1;
eta = 0.1;
xi = 0.01;
beta = 1 / (lambda + mu + xi);
beta_1 = 1 / (lambda + mu_1 + xi);
beta_2 = 1 / (lambda + mu_2 + xi);
alpha_1 = (lambda + mu_2 + theta_1 + xi + sqrt((lambda + mu_2 + theta_1 + xi)^2 - 4 * lambda * mu_2)) / (2 * lambda);
alpha_2 = (lambda + mu_1 + theta_2 + xi + sqrt((lambda + mu_1 + theta_2 + xi)^2 - 4 * lambda * mu_1)) / (2 * lambda);
alpha_3 = (lambda + mu + xi + sqrt((lambda + mu + xi)^2 - 4 * lambda * mu)) / (2 * lambda);
alpha_3b = (lambda + mu + xi - sqrt((lambda + mu + xi)^2 - 4 * lambda * mu)) / (2 * lambda);
chi_1 = gamma_1 * alpha_1 / ((lambda + xi) * alpha_1 - lambda * mu_2);
chi_2 = gamma_2 * alpha_2 / ((lambda + xi) * alpha_2 - lambda * mu_1);

Réponses (2)

KALYAN ACHARJYA
KALYAN ACHARJYA le 4 Déc 2023
Q1 = @(n) (1/alpha_3b)^(n + 2) * (1/alpha_1)^2 * ...
(sum((alpha_3b/alpha_1).^(1:10000)) * sum((alpha_3b/alpha_3).^(1:n+1)) - ...
sum(sum((alpha_3b/alpha_3).^i .* (alpha_3b/alpha_1).^(1:n+1-i))))
Q1 = function_handle with value:
@(n)(1/alpha_3b)^(n+2)*(1/alpha_1)^2*(sum((alpha_3b/alpha_1).^(1:10000))*sum((alpha_3b/alpha_3).^(1:n+1))-sum(sum((alpha_3b/alpha_3).^i.*(alpha_3b/alpha_1).^(1:n+1-i))))
lambda = 0.7;
mu_1=1.2;
mu_2=1;
mu = mu_1 + mu_2;
gamma_1 = 0.2;
gamma_2 = 0.3;
theta_1 = 0.2;
theta_2 = 0.1;
eta = 0.1;
xi = 0.01;
beta = 1 / (lambda + mu + xi);
beta_1 = 1 / (lambda + mu_1 + xi);
beta_2 = 1 / (lambda + mu_2 + xi);
alpha_1 = (lambda + mu_2 + theta_1 + xi + sqrt((lambda + mu_2 + theta_1 + xi)^2 - 4 * lambda * mu_2)) / (2 * lambda);
alpha_2 = (lambda + mu_1 + theta_2 + xi + sqrt((lambda + mu_1 + theta_2 + xi)^2 - 4 * lambda * mu_1)) / (2 * lambda);
alpha_3 = (lambda + mu + xi + sqrt((lambda + mu + xi)^2 - 4 * lambda * mu)) / (2 * lambda);
alpha_3b = (lambda + mu + xi - sqrt((lambda + mu + xi)^2 - 4 * lambda * mu)) / (2 * lambda);
chi_1 = gamma_1 * alpha_1 / ((lambda + xi) * alpha_1 - lambda * mu_2);
chi_2 = gamma_2 * alpha_2 / ((lambda + xi) * alpha_2 - lambda * mu_1);
While there are no coding errors in given code, however the verification of correctness and completeness has not been checked?.

Torsten
Torsten le 4 Déc 2023
Modifié(e) : Torsten le 4 Déc 2023
All the series involved are geometric series for which the finite and infinite sums are known:
sum_{i=1}^{i=n} q^i = q * (1-q^n)/(1-q) ( q <> 1)
sum_{i=1}^{i=Inf} q^i = q/(1-q) (|q| < 1)
Thus if you invest a little effort, you can get an analytical expression for Q1(n):
syms alpha_3b alpha_1 alpha_3 positive
syms m n i j integer
assume(abs(alpha_3b/alpha_1)<1)
s1 = symsum((alpha_3b/alpha_1)^j,j,1,Inf)
s1 = 
s1 = alpha_3b/(alpha_1-alpha_3b); % By inspection
s2 = symsum((alpha_3b/alpha_3)^m,m,1,n+1)
s2 = 
s3 = symsum((alpha_3b/alpha_1)^j,j,1,n+1-i)
s3 = 
s4 = symsum(s3*(alpha_3b/alpha_3)^i,i,1,n)
s4 = 
Q1 = simplify((1/alpha_3b)^(n+2)*(1/alpha_1)^2*(s1*s2-s4))
Q1 = 

Catégories

En savoir plus sur Gamma Functions dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by