Hi Trung,
To dynamically adjust a correction factor and match a specific slope in a log-log plot, you can follow these steps and the attached code snippets:
1. Load the data using the “readtable” function and compute the initial slope. The initial slope is computed using “polyfit” function which performs a linear fit and returns the slope.
data = readtable('Data.xlsx');
log_corrected_data = log10(corrected_data);
initial_slope = polyfit(log_time, log_corrected_data, 1);
2. Define the target slope, initial factor and parameters for iterative adjustment process.
correction_factor = initial_factor;
3. Iterate through and scale the correction factor in each iteration and recalculate the slope till it matches the target slope.
adjusted_data = corrected_data * correction_factor;
log_adjusted_data = log10(adjusted_data);
current_slope = polyfit(log_time, log_adjusted_data, 1);
if abs(current_slope(1) - target_slope) < 1e-5
if current_slope(1) > target_slope
correction_factor = correction_factor - step_size;
correction_factor = correction_factor + step_size;
4. Plot the original and the adjusted data on a “log-log” scale to visualize the effect of correction factor adjustment.
loglog(time, corrected_data, 'b', 'DisplayName', 'Original Data');
loglog(time, adjusted_data, 'r', 'DisplayName', 'Adjusted Data');
Refer to the attached plot for a clear understanding:
For more details on the “polyfit” function or the “log-log” plot, please refer to the documentation linked below:
Happy Coding!