Evaluate Inverse Laplace transform of a rational function

1 vue (au cours des 30 derniers jours)
proy
proy le 2 Jan 2024
Commenté : Dyuman Joshi le 2 Jan 2024
Hello.
I have the following rational function:
((4277106574556691*u^4)/1152921504606846976 - (1257694548906265*u^3)/281474976710656 + (5698702517425679*u^2)/4398046511104 + (1997475952800115*u)/137438953472 - 531873529530479/8589934592)/(u^4 + (4199658565989735*u^3)/70368744177664 + (2823782334942045*u^2)/1099511627776 + (5310607259221623*u)/549755813888 - 8541529549052223/137438953472)
When I try to find Inverse Laplace Transform, I got the following answer:
(4277106574556691*dirac(t))/1152921504606846976 + (9189017890449910061927721134279467*symsum((exp(root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)*t)*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))/(361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 679757729180367744), k, 1, 4))/9007199254740992 - (9774801846638324177398136662629971*symsum(exp(t*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))/(12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 679757729180367744), k, 1, 4))/2251799813685248 + (1630461552184412442890819099501081*symsum((exp(t*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2)/(12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 679757729180367744), k, 1, 4))/18014398509481984 - (380468160178698203651280037243045*symsum((exp(t*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3)/(12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 679757729180367744), k, 1, 4))/1152921504606846976
How do I evaluate this function at some points? Like t=1? There are other variables and I can't evaluate the expression.

Réponse acceptée

Dyuman Joshi
Dyuman Joshi le 2 Jan 2024
Use subs to substitute in place of a symbolic variable (or function, expression, array) -
syms u
%Expression
fun = ((4277106574556691*u^4)/1152921504606846976 - (1257694548906265*u^3)/281474976710656 + (5698702517425679*u^2)/4398046511104 + (1997475952800115*u)/137438953472 - 531873529530479/8589934592)/(u^4 + (4199658565989735*u^3)/70368744177664 + (2823782334942045*u^2)/1099511627776 + (5310607259221623*u)/549755813888 - 8541529549052223/137438953472);
%Inverse laplace of the expression, w.r.t the specified variable
%t is the default symbolic variable for inv laplace
FUN = ilaplace(fun, u);
out = subs(FUN, u, 1)
out = 
Now, you can use vpa() or double() to obtain the numerical value -
val1 = vpa(out)
val1 = 
0.023921292634752566165032684725215
val2 = double(out)
val2 = 0.0239
  2 commentaires
proy
proy le 2 Jan 2024
Thank you very much!
Dyuman Joshi
Dyuman Joshi le 2 Jan 2024
You're welcome!

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by