Evaluate Inverse Laplace transform of a rational function
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello.
I have the following rational function:
((4277106574556691*u^4)/1152921504606846976 - (1257694548906265*u^3)/281474976710656 + (5698702517425679*u^2)/4398046511104 + (1997475952800115*u)/137438953472 - 531873529530479/8589934592)/(u^4 + (4199658565989735*u^3)/70368744177664 + (2823782334942045*u^2)/1099511627776 + (5310607259221623*u)/549755813888 - 8541529549052223/137438953472)
When I try to find Inverse Laplace Transform, I got the following answer:
(4277106574556691*dirac(t))/1152921504606846976 + (9189017890449910061927721134279467*symsum((exp(root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)*t)*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))/(361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 679757729180367744), k, 1, 4))/9007199254740992 - (9774801846638324177398136662629971*symsum(exp(t*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))/(12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 679757729180367744), k, 1, 4))/2251799813685248 + (1630461552184412442890819099501081*symsum((exp(t*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2)/(12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 679757729180367744), k, 1, 4))/18014398509481984 - (380468160178698203651280037243045*symsum((exp(t*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3)/(12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 679757729180367744), k, 1, 4))/1152921504606846976
How do I evaluate this function at some points? Like t=1? There are other variables and I can't evaluate the expression.
0 commentaires
Réponse acceptée
Dyuman Joshi
le 2 Jan 2024
syms u
%Expression
fun = ((4277106574556691*u^4)/1152921504606846976 - (1257694548906265*u^3)/281474976710656 + (5698702517425679*u^2)/4398046511104 + (1997475952800115*u)/137438953472 - 531873529530479/8589934592)/(u^4 + (4199658565989735*u^3)/70368744177664 + (2823782334942045*u^2)/1099511627776 + (5310607259221623*u)/549755813888 - 8541529549052223/137438953472);
%Inverse laplace of the expression, w.r.t the specified variable
%t is the default symbolic variable for inv laplace
FUN = ilaplace(fun, u);
out = subs(FUN, u, 1)
Now, you can use vpa() or double() to obtain the numerical value -
val1 = vpa(out)
val2 = double(out)
2 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!