Vous suivez désormais cette question
- Les mises à jour seront visibles dans votre flux de contenu suivi.
- Selon vos préférences en matière de communication il est possible que vous receviez des e-mails.
Interpolation schemes that produce positive second derivatives of the interpolant
Réponse acceptée
6 commentaires
Plus de réponses (4)
46 commentaires
- (f + g)'' = f'' + g''
- (t*f)'' = t * f''
- fh := fc + h g
- score(fh) < score(fc), since g is negative
- fh''(x) >= 0 for all (x) by continuity of f''
- fh := fc + h g
- score(fh) < score(fc), since g is negative
- fh''(x) >= 0 for all (x) by continuity of f''
33 commentaires
19 commentaires
- for unconstrained optimization that has uniqueness solution, the solution is differentiable wrt input data (y)
- for constrained optimization the solution is NOT differentiable wrt input data (y) if one of the inequality constraint is active
- IMO transforming the parameters only change the way you solve numerical the optimiztion problem, it does not change the nature of the dependency of solution wrt input, thus the derivative.
- Using "model" (such as exponential formula here, or quadratic spline or subic spline) you will compute the dependency of solutions on the model space. For example you can decide the model is f(x) = cst. The solution is f(x) = mean(yi) = 1/n sum_i y(i) for all x, n is number of data. It satisfies f">=0, poorly fit the data, but you have the derivative df(dyi) = yi/n. If that makes sense for you then OK. This example is in the spirit of what proposed by Alex, just push to extreme to demonstrate the point of model dependency.
Voir également
Catégories
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Une erreur s'est produite
Impossible de terminer l’action en raison de modifications de la page. Rechargez la page pour voir sa mise à jour.
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
Asie-Pacifique
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)