whether meshes affect computational step lengths in pdepe

1 vue (au cours des 30 derniers jours)
feynman feynman
feynman feynman le 19 Jan 2024
Modifié(e) : Torsten le 20 Jan 2024
In pdepe the user specifies an xmesh and tmesh. Do these meshes affect what meshes and computational step lengths adopted by the solver and hence the error? In other words are the computational step lengths self adaptive as in ode23 etc?

Réponse acceptée

Torsten
Torsten le 19 Jan 2024
Modifié(e) : Torsten le 19 Jan 2024
Adaptive in x: no. Adaptive in t: yes. Thus the x-mesh affects computational accuracy, the t-mesh not. The accuracy in t is influenced as usual by the relative and absolute tolerances in the "odeset".
  4 commentaires
feynman feynman
feynman feynman le 20 Jan 2024
Maybe you are talking about accuracy rather than convergence? As I understand it spatial discretization affects accuracy but not convergence. To have two spatial discretization points over 100 m won't yield divergence if a fine mesh is convergent.
Torsten
Torsten le 20 Jan 2024
Modifié(e) : Torsten le 20 Jan 2024
A complicated profile of a function can only be reconstructed by its spatial derivatives if there are enough supporting points. Thus convergence to the solution of a complicated function can only be achieved if the x-mesh is chosen fine enough.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by