scientific notation convertion of coefficients of a polynomial

2 vues (au cours des 30 derniers jours)
MINATI PATRA
MINATI PATRA le 27 Jan 2024
Commenté : Dyuman Joshi le 31 Jan 2024
syms x
f = - 0.042440155 + 0.29476113*x + 0.47380563*x^2 - 0.17632127*x^3 + 0.038426007*x^4 - 0.005090693*x^5 + ...
0.00073686606*x^6 - 0.00024549191*x^7 + 0.000072758471*x^8 - 0.000017260649*x^9 + 0.0000048409949*x^10 - ...
0.0000014708831*x^11 + 0.00000037777292*x^12 - 0.000000086757727*x^13 + 0.000000020031646*x^14 - ...
4.1039434e-9*x^15 + 5.354131e-10*x^16 + 3.6711725e-12*x^17 - 1.9835736e-11*x^18 + 4.9956502e-12*x^19 - ...
7.3416852e-13*x^20 + 7.2822196e-14*x^21 - 4.9740077e-15*x^22 + 2.2607386e-16*x^23 - ...
6.1866125e-18*x^24 + 7.7315661e-20*x^25;
%% I want Matlab to convert all the coefficients of f(x) like: 7.7315661 e-20 (one digit before decimal and the exponential form with base 10 or e) and give me a modified f(x)
  3 commentaires
MINATI PATRA
MINATI PATRA le 27 Jan 2024
Yes, it is required for a particular sense. Actually I got the code from this format 3 years back but forgotten. That comand solved my purpose which vpa couldn't. That's why it is needed.
Walter Roberson
Walter Roberson le 31 Jan 2024
syms x
f = - 0.042440155 + 0.29476113*x + 0.47380563*x^2 - 0.17632127*x^3 + 0.038426007*x^4 - 0.005090693*x^5 + ...
0.00073686606*x^6 - 0.00024549191*x^7 + 0.000072758471*x^8 - 0.000017260649*x^9 + 0.0000048409949*x^10 - ...
0.0000014708831*x^11 + 0.00000037777292*x^12 - 0.000000086757727*x^13 + 0.000000020031646*x^14 - ...
4.1039434e-9*x^15 + 5.354131e-10*x^16 + 3.6711725e-12*x^17 - 1.9835736e-11*x^18 + 4.9956502e-12*x^19 - ...
7.3416852e-13*x^20 + 7.2822196e-14*x^21 - 4.9740077e-15*x^22 + 2.2607386e-16*x^23 - ...
6.1866125e-18*x^24 + 7.7315661e-20*x^25;
vpa(f, 8)
ans = 

Connectez-vous pour commenter.

Réponse acceptée

MINATI PATRA
MINATI PATRA le 27 Jan 2024
FM = regexprep(char(vpa(f)),'([0-9]+\.[0-9]+)','${num2str(str2num($1),''%e'')}')
This is working.
  5 commentaires
MINATI PATRA
MINATI PATRA le 31 Jan 2024
@ Dyuman
Yes, I will use that expression as solution of ODE, nothing more with that.
Dyuman Joshi
Dyuman Joshi le 31 Jan 2024
@Minati, Very well.

Connectez-vous pour commenter.

Plus de réponses (2)

VBBV
VBBV le 27 Jan 2024
syms x
f = - 0.042440155 + 0.29476113*x + 0.47380563*x^2 - 0.17632127*x^3 + 0.038426007*x^4 - 0.005090693*x^5 + ...
0.00073686606*x^6 - 0.00024549191*x^7 + 0.000072758471*x^8 - 0.000017260649*x^9 + 0.0000048409949*x^10 - ...
0.0000014708831*x^11 + 0.00000037777292*x^12 - 0.000000086757727*x^13 + 0.000000020031646*x^14 - ...
4.1039434e-9*x^15 + 5.354131e-10*x^16 + 3.6711725e-12*x^17 - 1.9835736e-11*x^18 + 4.9956502e-12*x^19 - ...
7.3416852e-13*x^20 + 7.2822196e-14*x^21 - 4.9740077e-15*x^22 + 2.2607386e-16*x^23 - ...
6.1866125e-18*x^24 + 7.7315661e-20*x^25
f = 
f = vpa(f,2)
f = 
something like this
  1 commentaire
Dyuman Joshi
Dyuman Joshi le 27 Jan 2024
Modifié(e) : Dyuman Joshi le 27 Jan 2024
@VBBV, nice idea, however, it does not change the notation for all values, please see the coefficients of x^4, x^3, x^2, x^1 and x^0.

Connectez-vous pour commenter.


Steven Lord
Steven Lord le 30 Jan 2024
syms x
f = - 0.042440155 + 0.29476113*x + 0.47380563*x^2 - 0.17632127*x^3 + 0.038426007*x^4 - 0.005090693*x^5 + ...
0.00073686606*x^6 - 0.00024549191*x^7 + 0.000072758471*x^8 - 0.000017260649*x^9 + 0.0000048409949*x^10 - ...
0.0000014708831*x^11 + 0.00000037777292*x^12 - 0.000000086757727*x^13 + 0.000000020031646*x^14 - ...
4.1039434e-9*x^15 + 5.354131e-10*x^16 + 3.6711725e-12*x^17 - 1.9835736e-11*x^18 + 4.9956502e-12*x^19 - ...
7.3416852e-13*x^20 + 7.2822196e-14*x^21 - 4.9740077e-15*x^22 + 2.2607386e-16*x^23 - ...
6.1866125e-18*x^24 + 7.7315661e-20*x^25
f = 
c = coeffs(f, 'all') % or
c = 
[c, t] = coeffs(f)
c = 
t = 
Now you can do whatever formatting you want with c.
The 'all' option and/or the second input are useful if one of the powers of x is not present in f, as in this example:
f2 = x^3+2*x+3
f2 = 
c1 = coeffs(f2) % Missing the x^2 term and in a different order
c1 = 
c2 = coeffs(f2, 'all') % Including the x^2 term
c2 = 
[c3, t3] = coeffs(f2) % x^2 (and its coefficient) are not present in both c3 and t3
c3 = 
t3 = 

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by