I have a matrix problem to solve; A = (:,1) and B = (:,1) and C(:,1) matrixes. This I need in the tensor form like shown in the figure. How to calculate the determinant.

3 vues (au cours des 30 derniers jours)

Réponses (1)

Rik
Rik le 1 Fév 2024
Use the zeros and size functions to generate the zeros row by row. Once you have the matrix you can use the det function to calculate the determinant.
  5 commentaires
Rik
Rik le 1 Fév 2024
That leads us to the question what you were planning to do with the determinant. Perhaps it is possible to find a solution to that problem instead.
You might want to have a read here and here. It will greatly improve your chances of getting a solution to your problem.
CHARUMATHI P R
CHARUMATHI P R le 6 Fév 2024
clc
clear all
close all
E0 = 5; % Permivittity at infinite frequency
W_P = 13.4e15; % Plasma Frequency
Gamma = 0.7e14; % collison Frequency
c = 3e8; % Speed of light in vacuum
e0 = 8.85e-12; % Permivittity in free space
lambda=1350e-9:10e-9:1750e-9;
f=c./lambda;
w=2*pi*f;
e11 = E0-(W_P^2./(w.^2-(1i*Gamma.*w)));
e22=16.2;
e33=11.9;
h1= 8; %Silver
h2= 25; %Silica
h3=19; %Germanium
e_TM=(e11.*e22.*e33)./((e22.*e33.*h1)+(e11.*e33.*h2)+(e11.*e22.*h3))./(h1+h2+h3);
e_TE=((e11.*h1)+(e22.*h2)+(e33.*h3))./(h1+h2+h3);
figure
plot(lambda,real(e_TM),'b',lambda,imag(e_TM),'g')
xlabel('Wavelength')
ylabel('permivittity (TM Mode)')
legend('Real','Imag')
figure
plot(lambda,real(e_TE),'b',lambda,imag(e_TE),'g')
xlabel('Wavelength')
ylabel('permivittity (TE Mode)')
legend('Real','Imag')
Here, I need to caluculate
figure
plot(lambda,real(e_eff),'b',lambda,imag(e_eff),'g')
legend('real','Im','Location','southeast');
xlabel('Wavelength (nm)');
ylabel('Effective Permittivity');

Connectez-vous pour commenter.

Catégories

En savoir plus sur Particle & Nuclear Physics dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by