pdepe/pde1dm's vectorized option

4 vues (au cours des 30 derniers jours)
feynman feynman
feynman feynman le 4 Fév 2024
Commenté : feynman feynman le 10 Mar 2024
In pdepe, when vectorized is turned on, the elapsed time is the same as that when vectorized is off. Why no improvement?
The doc of pde1dm says that for vectorized mode, we return coefficients at multiple x locations, so in the pdefunc function
nx=length(x); c = ones(1,nx);
need to replace the original
c=1
While pde1dm requires the above change in the pdefunc function code, when c and s in the pdefunc function aren't changed to their vector form, pdepe still allows vectorized to be turned on. Why such a difference?
  18 commentaires
Torsten
Torsten le 10 Mar 2024
Modifié(e) : Torsten le 10 Mar 2024
Sure, if you can vectorize this loop in the "pdepe" code and rewrite "pdentrp" such that it accepts array inputs, you are done:
% Interior points
for ii = 2:nx-1
[U,Ux] = pdentrp(singular,m,xmesh(ii),u(:,ii),xmesh(ii+1),u(:,ii+1),xi(ii));
[cR,fR,sR] = feval(pde,xi(ii),tnow,U,Ux,varargin{:});
denom = zxmp1(ii) * cR + xzmp1(ii-1) * cL;
denom(denom == 0) = 1;
up(:,ii) = ((xim(ii) * fR - xim(ii-1) * fL) + ...
(zxmp1(ii) * sR + xzmp1(ii-1) * sL)) ./ denom;
cL = cR;
fL = fR;
sL = sR;
end
feynman feynman
feynman feynman le 10 Mar 2024
thank you very much for the hint!

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by