Why do I get an error when I ran the integral?
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi everyone, I got an error when I run following the code, I think because of the symbolic piecewise functions or the nested integrals, or maybe something else. Could anyone help here, please?
clear all; clear; clc;
hU = 100;
NU = 10;
x0 = 150;
a1 = 11.95;
b1 = 0.135;
drm = sqrt(hU^2 + x0^2);
DML = 0.57 * drm^1.6;
% AL = zeros(size(50:10:300));
j = 1;
Rs = 50:10:300;
for i = 50:10:300
xl = sqrt(i^2 - x0^2 + hU^2);
xh = sqrt(i^2 + x0^2 + hU^2);
syms x r
f(x) = piecewise(x >= hU & x <= xl, (2 * x) / i^2, x > xl & x <= xh, (2 * x) / (pi * i^2) * acos(((x^2) - hU^2 + x0^2 - i^2) / (2 * x0 * sqrt(x^2 - hU^2))));
f(r) = piecewise(r >= hU & r <= xl, (2 * r) / i^2, r > xl & r <= xh, (2 * r) / (pi * i^2) * acos(((r^2) - hU^2 + x0^2 - i^2) / (2 * x0 * sqrt(r^2 - hU^2))));
DLM(r) = r^1.6;
PL(r) = 1 / (1 + a1 * exp(-b1 * ((180/pi)*asin(hU / r) - a1)));
PN(r) = 1 - PL(r);
PL(x) = 1 / (1 + a1 * exp(-b1 * ((180/pi)*asin(hU / x) - a1)));
PN(x) = 1 - PL(x);
AL(j) = NU * vpa(int(PL(r) * f(r) * (int(PL(x) * f(x), r, xh) + int(PN(x) * f(x), DLM(r), xh))^((NU)-1), hU, DML), 6);
j = j + 1;
end
plot(Rs, AL, 'b--o')
grid on
xlabel('Avg. Cell radius in meters')
ylabel('Association Probability')
legend('LOS Association Prob.')
5 commentaires
Walter Roberson
le 8 Fév 2024
Several of your int() do not indicate which variable to integrate over, and are guessing incorrectly.
Réponses (1)
Walter Roberson
le 7 Fév 2024
f(x) = piecewise(x >= hU & x <= xl, (2 * x) / i^2, x > xl & x <= xh, (2 * x) / (pi * i^2) * acos(((x^2) - hU^2 + x0^2 - i^2) / (2 * x0 * sqrt(x^2 - hU^2))));
There is no clause for x > xh or x < hU
5 commentaires
Wafaa
le 23 Mar 2024
Modifié(e) : Walter Roberson
le 23 Mar 2024
Warning: Unable to check whether the integrand
exists everywhere on the integration interval.
> In symengine
In sym/int (line 162)
In pp (line 31)
Warning: Unable to check whether the integrand
exists everywhere on the integration interval.
R(x,y)=piecewise(y <= x & x <= 1 & 0 <= y, y + 1, x < y & 0 <= x & y <= 1, x + 1);
%define xi
xi=zeros(1,m);
for i=1:m
xi(i)=(i-1)/(m-1);
end
%define psi(i)=L(R(x,y)) where y=xi
Lpsi=sym(zeros(1,m));
psi=sym(zeros(1,m));
for i=1:m
% psi(i)=ff(xi(i))-(R(x,xi(i))^3)*(x/2)+diff(R(x,xi(i))^3)*((x/3)-(x^2/2))+diff(R(x,xi(i))^3,2)*((x/4)-(2*x^2/4)+(x^3/3));%int(K(x,y)*(R(x,y))^3,y,0,xi(i))+int(K(x,y)*(R(x,y))^3,y,xi(i),1);
psi(i)=ff(xi(i))-int(K(x,y)*(R(x,y))^3,y,0,1);
Lpsi(i)=ff(x)-int(K(x,y)*subs(psi(i),x,y)^3,y,0,1);
% Lpsi(i)=psi(i)^3*(x/2)+diff(psi(i)^3)*((x/3)-(x^2/2))+diff(psi(i)^3,2)*((x/4)-(2*x^2/4)+(x^3/3));
end
please help me
Walter Roberson
le 23 Mar 2024
your xl is mostly complex-valued, which is outside the valid piecewise() range, so you mostly get NaN
hU = 100;
NU = 10;
x0 = 150;
a1 = 11.95;
b1 = 0.135;
drm = sqrt(hU^2 + x0^2);
DML = 0.57 * drm^1.6;
% AL = zeros(size(50:10:300));
j = 1;
%Rs = 50:10:300;
Rs = 50:10:100;
for i = Rs
xl = sqrt(i^2 - x0^2 + hU^2)
xh = sqrt(i^2 + x0^2 + hU^2)
syms x r
f(x) = piecewise(x >= hU & x <= xl, (2 * x) / i^2, x > xl & x <= xh, (2 * x) / (pi * i^2) * acos(((x^2) - hU^2 + x0^2 - i^2) / (2 * x0 * sqrt(x^2 - hU^2))))
%f(r) = piecewise(r >= hU & r <= xl, (2 * r) / i^2, r > xl & r <= xh, (2 * r) / (pi * i^2) * acos(((r^2) - hU^2 + x0^2 - i^2) / (2 * x0 * sqrt(r^2 - hU^2))));
DLM(r) = r^1.6;
%PL(r) = 1 / (1 + a1 * exp(-b1 * ((180/pi)*asin(hU / r) - a1)));
%PN(r) = 1 - PL(r);
PL(x) = 1 / (1 + a1 * exp(-b1 * ((180/pi)*asin(hU / x) - a1)));
PN(x) = 1 - PL(x);
inner3 = PL(x) * f(x)
inner1 = int(inner3, x, xl, xh)
inner4 = PN(x) * f(x)
inner2 = int(inner4, x, DLM(r), xh)
outer = int(PL(r) * f(r) * (inner1 + inner2)^((NU)-1), r, hU, DML)
AL(j) = NU * vpa(outer, 6);
AL(j)
j = j + 1;
end
dAL = double(AL);
plot(Rs, dAL, 'b--o')
grid on
xlabel('Avg. Cell radius in meters')
ylabel('Association Probability')
legend('LOS Association Prob.')
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!