Unable to find explicit solution in Lagrangian optimization

3 vues (au cours des 30 derniers jours)
Fabian
Fabian le 11 Fév 2024
Commenté : Matt J le 11 Fév 2024
I am trying to find the analytical solution to the following problem:
I tried solving it by coding the Lagrangian by hand and use solve, but Matlab prints the warning: "Unable to find explicit solution".
I used the following code:
syms e1 e2 p1 p2 rho gamma lambda
syms E H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho)^(1/rho)
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-E)
L_e1 = diff(L,e1) == 0
L_e2 = diff(L,e2) == 0
L_lambda = diff(L,lambda) == 0
system = [L_e1,L_e2,L_lambda]
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda])
Do you know what I could do to solve this? Or is there a different and better way to find an analytical solution?
  1 commentaire
Matt J
Matt J le 11 Fév 2024
Modifié(e) : Matt J le 11 Fév 2024
Note that the problem can always be rewritten in the simpler form,
where x=e/E and P=p*E. This is assuming E is a known positive constant.

Connectez-vous pour commenter.

Réponse acceptée

Catalytic
Catalytic le 11 Fév 2024
Modifié(e) : Catalytic le 11 Fév 2024
An analytical solution for 0<rho<1 is -
A=[1 0;
0 1;
-1 0;
0 -1]*E;
[fval,i]=min(A*[p1;p2]);
e1=A(i,1);
e2=A(i,2);
  2 commentaires
Catalytic
Catalytic le 11 Fév 2024
Modifié(e) : Catalytic le 11 Fév 2024
You can see this graphically by plotting the constrained region. The region always has extreme points at (), so that's where the optimum must lie.
E=1;
for rho=[0.1:0.2:0.9]
fimplicit(@(e1,e2) abs(e1).^rho + abs(e2).^rho - E.^rho, [-1.5,1.5]); hold on
end
Matt J
Matt J le 11 Fév 2024
I like it. And, in fact, because the extreme points lie at points where H(e1,e2) is not differentiable, it shows that you will never find the true solution with Lagrange multiplier analysis.

Connectez-vous pour commenter.

Plus de réponses (1)

Matt J
Matt J le 11 Fév 2024
If you make rho explicit, it seems to be able to find solutions. I doubt there would be a closed-form solution for general rho.
rho=2;
syms e1 e2 p1 p2 gamma lambda
syms E H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho)
H(e1, e2) = 
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-E^rho)
L(e1, e2, lambda) = 
L_e1 = diff(L,e1) == 0
L_e1(e1, e2, lambda) = 
L_e2 = diff(L,e2) == 0
L_e2(e1, e2, lambda) = 
L_lambda = diff(L,lambda) == 0
L_lambda(e1, e2, lambda) = 
system = [L_e1,L_e2,L_lambda]
system(e1, e2, lambda) = 
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda])
e1_s = 
e2_s = 
lambda_s = 
  4 commentaires
Matt J
Matt J le 11 Fév 2024
Even when it can be explicitly solved, the result isn't nice:
rho=sym(1/4);
syms e1 e2 p1 p2 gamma lambda
syms H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho);
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-1);
L_e1 = diff(L,e1) == 0;
L_e2 = diff(L,e2) == 0;
L_lambda = diff(L,lambda) == 0;
system = [L_e1,L_e2,L_lambda];
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda])
Warning: Possibly spurious solutions.
e1_s = 
e2_s = 
lambda_s = 
Walter Roberson
Walter Roberson le 11 Fév 2024
You can eliminate the root() constructs, but the result is confusing.
rho=sym(1/4);
syms e1 e2 p1 p2 gamma lambda
syms H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho);
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-1);
L_e1 = diff(L,e1) == 0;
L_e2 = diff(L,e2) == 0;
L_lambda = diff(L,lambda) == 0;
system = [L_e1,L_e2,L_lambda];
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda], 'maxdegree', 3)
Warning: Possibly spurious solutions.
e1_s = 
e2_s = 
lambda_s = 

Connectez-vous pour commenter.

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Produits


Version

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by