graph is the not plotted as desired because of tolerance level

2 vues (au cours des 30 derniers jours)
Syed Mohiuddin
Syed Mohiuddin le 26 Fév 2024
Commenté : Syed Mohiuddin le 27 Fév 2024
hi,
I have a coupled non-linear differential equations
(d^2 f)/(dy^2 )+m2*g2*dB/dy-2*i*R2*g1*f - g3*G1*y - R4*g1 = 0
(d^2 B)/(dy^2 )+t4/(1-i*H1)*df/dy=0
(d^2 T)/(dy^2 )-1/2*g4*G1*PR*(f+ ̅f)+ER*PR*[g5*(df/dy*d ̅f/dy)+g6*m2*(dB/dy*dB̅/dy)]=0, where ̅f is conjugate of f and B̅ is conjugate of B
Boundary conditions are
f=0 at y=0
f=C1 at y=1
And
dB/dy-(t4/(P1* (1-i*H1 ) ))* B=0 at y=0
dB/dy+(t4/(P2 (1-i*H1 ) ))* B=0 at y=1
and
T=0 at y=0
T=1 at y=1
when i run the program, i get an error "Warning: Unable to meet the tolerance without using more than 1666 mesh
points. The last mesh of 833 points and the solution are available in the output argument. The maximum residual is 0.875363, while requested accuracy is 0.001. Unable to meet the tolerance without using more than 1666 mesh points", I tried using NMax but could not get the solution"
I have enclosed the program and graph for your reference, I need to get the graph similar to the one i have enclosed. Please help me in completing the graph.
Thank you
Mat lab program
close all
clc
p=0.1;
P1=2;
P2=2;
b1=0.00021;
b2=0.000058;
S1=0.005;
S2=580000;
G1=2;
EM2=20;
R1=997.1;
R2=5;
C1=1;
R3=4420;
H1=0.25;
K1=1;
R4=1;
PR=7.0;
ER= 2.0;
cf=4179;
cs=0.56;
K2=0.613;
K3=7.2;
t1=(1./((1-p).^2.5));
t2=(1-p)+(p.*(R3./R1));
t3=(1-p)+p.*((R3.*b2)./(R1.*b1));
S=(S2./S1);
t4=1-((3*(1-S).*p)./((2+S)+(1-S).*p));
t5=(1-p)+(p.*R3.*cs)./(R1.*cf);
t6=(1+2.*(K2./K3)+2.*p.*(1-K2./K3))./(1+2.*(K2./K3)-p.*(1-K2./K3));
g1=t2./t1;
g2=1/t1;
g3=t3./t1;
g4=t5./t6;
g5=t1./t6;
g6=1./(t4.*t6);
m1=(t4./(P1.*(1-1i.*H1)));
m2=(t4./(P2.*(1-1i.*H1)));
dydx=@(x,y)[y(4);
y(5);
y(6);
-EM2.*g2.*y(4)+2.*1i.*R2.*g1.*y(1)+g3.*G1.*x+R4.*g1;
(-t4./(1-1i.*H1)).*y(3);
1/2.*g4.*G1.*PR.*(y(1)+conj(y(1)))-ER.*PR.*(g5.*(y(4).*conj(y(4))+g6.*EM2.*(y(5).*conj(y(5)))))];
BC = @(ya,yb)[ya(1)-0;yb(1)-C1;ya(3)-0;yb(3)-1.0;ya(5)-m1.*ya(2);yb(5)+m2.*yb(2)];
yinit = [0.01;0.01;0.01;0.01;0.01;0.01];
solinit = bvpinit(linspace(0,1,50),yinit);
options = bvpset('AbsTol',1e-6);
U1 = bvp4c(dydx,BC,solinit,options);
hold on
p=0.001;
P1=2;
P2=2;
b1=0.00021;
b2=0.000058;
S1=0.005;
S2=580000;
G1=2;
EM2=20;
R1=997.1;
R2=5;
C1=1;
R3=4420;
H1=0.5;
K1=1;
R4=1;
PR=7.0;
ER= 2.0;
cf=4179;
cs=0.56;
K2=0.613;
K3=7.2;
t1=(1./((1-p).^2.5));
t2=(1-p)+(p.*(R3./R1));
t3=(1-p)+p.*((R3.*b2)./(R1.*b1));
S=(S2./S1);
t4=1-((3*(1-S).*p)./((2+S)+(1-S).*p));
t5=(1-p)+(p.*R3.*cs)./(R1.*cf);
t6=(1+2.*(K2./K3)+2.*p.*(1-K2./K3))./(1+2.*(K2./K3)-p.*(1-K2./K3));
g1=t2./t1;
g2=1/t1;
g3=t3./t1;
g4=t5./t6;
g5=t1./t6;
g6=1./(t4.*t6);
m1=(t4./(P1.*(1-1i.*H1)));
m2=(t4./(P2.*(1-1i.*H1)));
dydx=@(x,y)[y(4);
y(5);
y(6);
-EM2.*g2.*y(4)+2.*1i.*R2.*g1.*y(1)+g3.*G1.*x+R4.*g1;
(-t4./(1-1i.*H1)).*y(3);
1/2.*g4.*G1.*PR.*(y(1)+conj(y(1)))-ER.*PR.*(g5.*(y(4).*conj(y(4))+g6.*EM2.*(y(5).*conj(y(5)))))];
BC = @(ya,yb)[ya(1)-0;yb(1)-C1;ya(3)-0;yb(3)-1.0;ya(5)-m1.*ya(2);yb(5)+m2.*yb(2)];
yinit = [0.01;0.01;0.01;0.01;0.01;0.01];
solinit = bvpinit(linspace(0,1,50),yinit);
options = bvpset('AbsTol',1e-6);
U2 = bvp4c(dydx,BC,solinit,options);
hold on
p=0.02;
P1=2;
P2=2;
b1=0.00021;
b2=0.000058;
S1=0.005;
S2=580000;
G1=2;
EM2=20;
R1=997.1;
R2=5;
C1=1;
R3=4420;
H1=0.75;
K1=1;
R4=1;
PR=7.0;
ER= 2.0;
cf=4179;
cs=0.56;
K2=0.613;
K3=7.2;
t1=(1./((1-p).^2.5));
t2=(1-p)+(p.*(R3./R1));
t3=(1-p)+p.*((R3.*b2)./(R1.*b1));
S=(S2./S1);
t4=1-((3*(1-S).*p)./((2+S)+(1-S).*p));
t5=(1-p)+(p.*R3.*cs)./(R1.*cf);
t6=(1+2.*(K2./K3)+2.*p.*(1-K2./K3))./(1+2.*(K2./K3)-p.*(1-K2./K3));
g1=t2./t1;
g2=1/t1;
g3=t3./t1;
g4=t5./t6;
g5=t1./t6;
g6=1./(t4.*t6);
m1=(t4./(P1.*(1-1i.*H1)));
m2=(t4./(P2.*(1-1i.*H1)));
dydx=@(x,y)[y(4);
y(5);
y(6);
-EM2.*g2.*y(4)+2.*1i.*R2.*g1.*y(1)+g3.*G1.*x+R4.*g1;
(-t4./(1-1i.*H1)).*y(3);
1/2.*g4.*G1.*PR.*(y(1)+conj(y(1)))-ER.*PR.*(g5.*(y(4).*conj(y(4))+g6.*EM2.*(y(5).*conj(y(5)))))];
BC = @(ya,yb)[ya(1)-0;yb(1)-C1;ya(3)-0;yb(3)-1.0;ya(5)-m1.*ya(2);yb(5)+m2.*yb(2)];
yinit = [0.01;0.01;0.01;0.01;0.01;0.01];
solinit = bvpinit(linspace(0,1,50),yinit);
options = bvpset('AbsTol',1e-6);
U3 = bvp4c(dydx,BC,solinit,options);
hold on
plot(U1.x,real([U1.y(3,:)]),'b','linewidth',1.5)
plot(U2.x,real([U2.y(3,:)]),'r','linewidth',1.5)
plot(U3.x,real([U3.y(3,:)]),'g','linewidth',1.5)

Réponse acceptée

Torsten
Torsten le 26 Fév 2024
dydx(5) = (-t4./(1-1i.*H1)).*y(4);
instead of
dydx(5) = (-t4./(1-1i.*H1)).*y(3);
in your function definition.
I didn't look further - maybe there are more errors in the setup of your system of equations.
  1 commentaire
Syed Mohiuddin
Syed Mohiuddin le 27 Fév 2024
Thanks a lot, i have made the correction and have got the result. Your every answer is of great help to me. Thank you once again

Connectez-vous pour commenter.

Plus de réponses (0)

Tags

Produits


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by